
AXA: Cross-Language Analysis through
Integration of Single-Language Analyses

Tobias Roth
ATHENE

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
roth@cs.tu-darmstadt.de

Julius Näumann
ATHENE

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
julius.naeumann@tu-darmstadt.de

Dominik Helm
University of Duisburg-Essen

ATHENE
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
helm@cs.tu-darmstadt.de

Sven Keidel
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany

Mira Mezini
ATHENE
hessian.AI

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
mezini@cs.tu-darmstadt.de

ABSTRACT
Modern software is often implemented in multiple interacting pro-
gramming languages. When performing static analysis of such
software, it is desirable to reuse existing single-language analyses
to allow access to the results of decades of implementation effort.

However, there are major challenges for this approach. In this
paper, we analyze them and present AXA, an architecture that
addresses them and enables cross-language analysis by integrating
single-language analyses.

To evaluate AXA, we implemented a cross-language points-to
analysis for Java applications that interact with native code via
Java Native Interface (JNI) and with JavaScript code via Java’s
ScriptEngine. The evaluation shows that AXA enables significant
reuse of existing static analyses. It also shows that AXA supports
complex interactions and significantly increased recall of reused
analyses without compromising precision.

KEYWORDS
Static Analysis, Multi-language

ACM Reference Format:
Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini.
2024. AXA: Cross-LanguageAnalysis through Integration of Single-Language
Analyses. In 39th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3691620.3696193

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3696193

1 INTRODUCTION
Modern software utilizes multiple programming languages [17],
leveraging their respective features and strengths for enhanced
functionality and efficiency. Scripting languages such as JavaScript
are commonly used for frontend, object-oriented languages like C#
or Java for backend, and low-level languages such as C, C++, or
WebAssembly for performance-critical computations. Code written
in multiple languages is composed through cross-language interac-
tions like calling foreign-language functions and passing values.

Although multi-language software is widespread, state-of-the-
art static analysis frameworks analyze a single language only [7,
8, 25, 29]. Even though some frameworks use summaries for na-
tive methods in the Java Class Library, they disregard other cross-
language interactions, leading to unsound analysis results [7, 25, 29],
or imprecisely over-approximate possible effects of this interac-
tion [5], rendering the analysis results useless.

Cross-language analyses analyzemulti-language programs across
language boundaries. We identified the following four different ap-
proaches for developing cross-language analyses that either:

(1) use handcrafted summaries for foreign function calls,
(2) implement all analyses into a single framework,
(3) reify summaries, or
(4) translate all languages into a common representation.
As we elaborate in Section 5, they all have limitations: (1) hand-

crafted summaries [7, 10, 12] are time-consuming and prone to
becoming outdated; (2) cross-language analyses within a single
framework [3, 15, 21, 30] require significant effort to implement for
unsupported languages; (3) summary extraction and reification [2, 4,
19, 27] struggles with implicit boundaries and cyclic dependencies;
and (4) translating code to a common representation [6, 14, 22,
26, 28] loses high-level information, reducing analysis precision.
These problems can be addressed through the integration of existing
single-language analyses implemented in different frameworks.

In this paper, we present such an approach: the AXA architec-
ture, an Architecture for Cross-language Analysis. By reusing

1195

2024 39th IEEE/ACM International Conference on Automated Software Engineering (ASE)

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3691620.3696193&domain=pdf&date_stamp=2024-10-27


ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini

existing analyses, our approach does not require hand-crafted sum-
maries and avoids duplicating implementation effort. Moreover, our
approach analyzes each language by language-specialized analy-
ses and, as a result, does not need to reify summaries. Lastly, our
approach does not lose precision through translation to an interme-
diate representation because it analyzes each language in a suitable
representation.

AXA comprises the following distinct components: First, AXA
augments existing single-language analyses through language de-
tectors designed to identify cross-language interactions like foreign
function calls and foreign memory accesses. Second, translators
convert analysis results between different single-language analy-
ses. Third, a central coordinator orchestrates the interleaved execu-
tion of single-language analyses and propagates results between
them. Crucially, the individual analyses are executed in an inter-
leaved manner, exchanging intermediate results as soon as they
become available, thus computing a global fixed-point solution.
Finally, connectors wrap the reused single-language analyses, pro-
viding a unified interface for the coordinator to start and resume
them. The coordinator is analysis- and framework-independent and
reusable across different cross-language analyses. Connectors are
framework-specific, but need to be implemented only once for each
integrated analysis framework. Translators and language detectors
are framework- and analysis-specific. Yet, our evaluation shows
that the effort of implementing translators and language detectors
is negligible compared to the complexity of state-of-the-art static
analysis frameworks.

We evaluate AXA by developing a cross-language points-to anal-
ysis for Java interacting with embedded JavaScript code and native
code compiled to LLVM bitcode. We implement this cross-language
analysis by integrating an existing Java analysis from the OPAL
framework [7], a JavaScript analysis from the TAJS framework [8],
and an LLVM analysis from the SVF framework [27]. Each of these
analyses represents the respective state of the art and their perfor-
mance and precision has been fine-tuned over many years.

Our evaluation shows that AXA allows the reuse of more than
98% of lines of code of the existing analyses. Furthermore, we vali-
date that our analysis can handle all relevant Java-JavaScript and
Java-Native cross-language interaction patterns. For this purpose,
we use a hand-crafted benchmark for the cross-language inter-
actions we identified. Finally, we show that our cross-language
analysis significantly improves the recall over the integrated single-
language analyses without compromising precision.

In summary, our contributions are:

• AXA, an Architecture for cross-language Analysis that in-
tegrates existing single-language analyses modularly. AXA
allows building upon existing, carefully fine-tuned, state-of-
the-art analyses implemented in different frameworks. AXA
works for multi-language programs with implicit language
boundaries and dynamically generated code and does not
sacrifice precision by translating multi-language programs
to a common representation.

• A cross-language pointer and call-graph analysis based on
AXA for Java with embedded JavaScript and native LLVM
code, integrating existing single-language analyses from
OPAL, TAJS, and SVF.

1 // Java

2 class JavaScriptCalculator {

3 int add(int x, int y) { return calc(x,"+",y); }

4 int calc(int x, String operator, int y){

5 var sem = new ScriptEngineManager();

6 var se = sem.getEngineByName("JavaScript");

7 se.put("x", x); se.put("y", y);

8 // JavaScript

9 se.eval("var result = x "+operator+" y;");

10 int r = se.get("result");

11 return r;

12 }

13 }

Listing 1: Example of Java-JavaScript Interaction

• A systematic evaluation that shows that cross-language anal-
yses in AXA require negligible implementation effort com-
pared to state-of-the-art static analysis frameworks, can sup-
port all relevant Java-JavaScript and Java-Native interaction
patterns, and improve recall over single-language analyses.

2 CROSS-LANGUAGE ANALYSIS CHALLENGES
This section discusses challenges that arise when implementing
cross-language analyses by integrating single-language analyses. In
total, we identified three challenges that we illustrate at the exam-
ples of Java-JavaScript and Java-Native cross-language interactions.
Challenge 1 and 3 describe general problems and also apply to other
cross-language analysis approaches.
Challenge 1: Detecting Cross-language Interaction
Cross-language analyses first must detect cross-language interac-
tions. Depending on the languages, this is more or less difficult.
Listing 1 illustrates a Java-JavaScript cross-language interaction,
where Lines 5-6 setup a ScriptEngine JavaScript interpreter, Line
7 sets the value of JavaScript variables x and y, Line 9 evaluates
a piece of JavaScript code, and Line 10 retrieves the value of the
JavaScript variable result. The detection of this cross-language
interaction is difficult because the calls to the JavaScript interpreter
are not easily distinguishable from regular intra-language calls and
could even be located in different Java methods. Furthermore, the
JavaScript code itself is dynamically generated while the Java pro-
gram is running (Line 9). Reliably detecting such cross-language
interaction requires precise Java points-to and string analysis in-
formation.
Challenge 2: Translating Between Analysis Lattices
Analyses for different languages represent their information with
different lattices. For example, OPAL’s Java points-to analysis rep-
resents pointer information with sets of allocation-sites of objects
P(JavaAllocSite) and TAJS’ JavaScript analysis operates on a re-
duced product of approximations of each JavaScript type Undef ×
Null×Bool×Num× String×P(JavaScriptAllocSite) [8]. Hence, a
cross-language analysis needs to translate from the lattice of one
analysis to the lattice of another analysis. This translation can be
difficult, because one lattice may contain more or less information
than the other lattice. For example, OPAL’s Java lattice does not

1196



AXA: Cross-Language Analysis through Integration of Single-Language Analyses ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1 // Java

2 class Person {

3 String name;

4 void native setName(String name);

5 public static void main(String args[]) {

6 var p = new Person();

7 p.setName(args[0]);

8 var n = p.name;

9 }

10 }

11

12 // C

13 JNIEXPORT void JNICALL Java_Person_setName(

14 JNIEnv *env, jobject obj, jstring newValue

15 ) {

16 jclass personClass = env->GetObjectClass(obj);

17 jfieldID fieldId = env->GetFieldID(personClass,

"name", "Ljava/lang/String;");

18 env->SetObjectField(obj, fieldId, newValue);

19 }

Listing 2: Example of Java-Native Interaction

contain numeric information, in contrast to TAJS’ JavaScript lattice.
Furthermore, the type of information in different lattices may be
incompatible. For instance, OPAL’s points-to sets of Java allocation
sites do not conform to TAJS’ points-to sets of JavaScript allocation
sites.
Challenge 3: Cross-Language Fixed-point
To compute the final analysis result, a cross-language analysis needs
to run single-language analyses interleaved until no new informa-
tion can be found and a cross-language fixed-point is reached. For
example, Listing 2 illustrates a Java-Native interaction, where the
native method setName sets field Person.name in Line 18. To com-
pute the points-to set for variable n, we first need to propagate Java
pointer information to determine the points-to set for the argu-
ments of p.setName, then propagate native pointer information to
determine the points-to set of newValue, and finally propagate Java
pointer information again. However, computing a cross-language
fixed-point is difficult if single-language analyses are not designed
to be executed interleaved with other analyses.

In summary, cross-language interactions can be complex and
pose numerous challenges to cross-language static analysis. In
Figure 3, we explain how AXA tackles these challenges.

3 ARCHITECTURE
This section presents AXA, our Architecture for cross-language
Analysis. AXA integrates several single-language analyses. For in-
stance, to analyze multi-language software using Java, JavaScript,
and native (C++) code, AXA would integrate existing analyses for
Java (analysisJ ), JavaScript (analysisJS), and native code (analysisN )
(cf. Figure 1). AXA introduces specialized components to handle
each of the challenges discussed in Section 2. We describe these

coordinator

Java
Analysis
•analysisJ
•detectorJ,JS
•detectorJ,N
• connectorJ

JS
Analysis
•analysisJS
•detectorJS,J
• connectorJS

Native
Analysis
•analysisN
•detectorN ,J
• connectorN

translatorJS,J translatorJ,N

Figure 1: Architecture overview, by the example of three
languages, Java (J), JavaScript (JS), and Native (N). Arrows
indicate interactions between components.

components (cf. Section 3.1) before elaborating on how they in-
teract with each other (cf. Section 3.2). In Section 3.3, we describe
requirements to analysis frameworks for integration into AXA.

3.1 Components
Existing single-language analyses are agnostic of cross-language
interactions (Challenge 1). To address this issue, AXA extends
each single-language analysis to be integrated with one detector for
each language it interacts with. For example, analysisJ is extended
with detectorJ,JS for JavaScript and detectorJ,N for native code.

To cope with different internal representations of the results of
the integrated single-language analyses (Challenge 2), AXA in-
troduces translators. For instance, translatorJS,J translates between
representations of analysisJS and analysisJ .

To resolve mutual dependencies across language boundaries
(Challenge 3), AXA introduces a central coordinator that executes
the integrated analyses in an interleaved manner rather than in
a fixed sequence. To allow the coordinator to interact with the
integrated analyses, AXA wraps each integrated analysis into a
connector (e.g., connectorJ for analysisJ ) that implements a uniform
interface.

Overall, AXA is similar to a blackboard architecture [23], with
the integrated single-language analyses being the experts and the
coordinator and its central store being the blackboard over which
the experts indirectly share results to collaboratively solve a multi-
language analysis problem.

We now describe each of these components in detail.

3.1.1 Language Detectors. In AXA, a language detector (a) identi-
fies cross-language interactions with a particular other language,
(b) gathers information about these interactions, and (c) queries
analysis results of the foreign-language analysis.

For example, detectorJ,JS in Figure 1 may identify the assignment
of the result of a JavaScript call to a Java variable, gather the called
function’s name and parameter values, and query the results of
analysisJS for the assigned result value.

Recall from Section 2 that cross-language interfaces may differ
in complexity. Language interactions can be explicit or implicit.
A Java-to-native call can be identified and resolved at the callsite
alone. In contrast, resolving native-to-Java interactions requires
collecting information over multiple JNI callsites (cf. Lines 16-18
in Listing 2), including analysis of string parameters, similar to
resolving reflective invocations, a problem known to be hard to

1197



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini

1 function detect(code):

2 foreach statement ∈ code:

3 if stmt contains native method call:

4 methodCall = stmt.getNativeMethodCall()

5 xl = new CrossLanguageInfo()

6 xl.language = native

7 xl.methodName = methodCall.name

8 actualParams = methodCall.getParams

9 xl.paramsPTS = query points-to sets of

actualParams

10 add xl to coordinator state

11 if stmt.isAssignment:

12 query points-to set of xl from 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟

13 translate points-to set with translatorJ,N
14 add translated points-to set to points-to

set of stmt.lhs

Listing 3: Java Native Detector (Pseudocode)

resolve for static analyses [13]. Detectors must be able to detect
these interactions and resolve their parameters.

Listing 3 shows pseudocode for a simplified detector that extends
a Java points-to analysis to handle native method calls (detectorJ,N ).
The detector scans every statement (Line 2), checking whether it
contains a native method call (Line 6). If this is the case, it (a) col-
lects the method name (Line 7) and the actual parameters (Line 8),
(b) queries and collects the points-to sets for the actual parame-
ters (Line 9), and (c) queries the result of the native call from the
coordinator (Line 12). Then, the detector uses translatorJ,N to trans-
late the result of the native call (Line 13) and adds the translated
points-to set to to the Java points-to sets (Line 14).

Listing 4 shows pseudocode for a detector that extends a Java
points-to analysis to handle interactions with JavaScript via Java’s
ScriptEngine. As illustrated in Section 2, an interaction of Java
with JavaScript via the ScriptEngine may span multiple calls to
ScriptEngine methods like put (for setting JavaScript to Java val-
ues), get (for retrieving JavaScript values), and eval (for evaluating
JavaScript code). The detector scans the code to gather information
about these ScriptEngine calls (JS code, JS values set using put)
over multiple statements (cf. Line 3). Each ScriptEngine instance
is identified by its allocation site (Line 5). When the detector en-
counters the ScriptEngine’s put method, it queries the points-to
set of the parameter (Line 8). For the eval method, it collects the
evaluated JavaScript code (Line 10). When encountering a call to
get, the detector queries the coordinator for points-to information
of the value retrieved via get (Line 12). This points-to information
is computed by the JavaScript analysis. Subsequently, the detector
uses the JavaScript-Java translator translatorJS,J to translate the
queried information to the representation expected by analysisJ
(Line 13) and adds the result to the analysis state, i.e., it extends the
respective points-to set (Line 14). Finally, the map with information
of all ScriptEngine instances is added to the internal state of the
central coordinator (Line 15). This allows the central coordinator
to trigger the JavaScript analysis for these interactions.

1 function detect(code):

2 m = map (allocation-site -> CrossLanguageInfo)

3 foreach stmt ∈ code:

4 if stmt contains ScriptEngine interaction:

5 se = query points-to set of stmt.receiver

6 xl = m(se)

7 if stmt is put:

8 xl.puts += (put-variable-name -> query

points-to set of put-value)

9 if stmt is eval:

10 xl.eval = stmt

11 if stmt is get:

12 query points-to set for get-variable-name

in xl from 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑜𝑟

13 translate points-to set with translatorJS,J
14 add translated points-to set to points-to

set of stmt.lhs

15 add m to coordinator state

Listing 4: JavaScript Detector (Pseudocode)

3.1.2 Translators. A translator transforms analysis results of one
analysis lattice into lattice elements of another analysis, and vice
versa.

The information and sensitivity can differ between analyses, e.g.,
pointer information compared to a reduced product over abstrac-
tions of types, or flow sensitive vs. flow insensitive results. The
result of the translation is either equivalent to the original result or
a sound over-approximation of it (recall that lattice representations
of different analyses may be incompatible with each other).

Listing 5 shows pseudocode of the translation function of a
JavaScript-Java translator for points-to information. Both analyses
compute points-to sets for objects, i.e., JavaScript resp. Java objects.
These points-to sets are translated element-wise, i.e., the sets are
unpacked and the containing analysis-specific points-to elements
are translated to the representation of the respective other analysis
(Line 9) before being packed again to a points-to set.

3.1.3 Coordinator and Connectors. The central coordinator of AXA
orchestrates the interleaved execution of integrated analyses as dic-
tated by dependencies between them. It does so via the Connector
interface shown in Listing 6. Each single-language analysis inte-
grated into AXA is wrapped by a connector that implements the
Connector interface in an analysis-specific manner using analysis-
specific methods for initialization, configuration, and execution.
1 interface Connector:

2 start: ∅ → Result × P(Dependency)
3 resume: ∅ → Result × P(Dependency)

Listing 6: Connector Interface (Pseudocode)

The coordinator starts the first analysis as configured by AXA’s
user by calling the respective startmethod. The startmethod sets
up the corresponding single-language analysis with an initial state;
subsequently, it executes the analysis together with the analysis-
specific language detectors.

1198



AXA: Cross-Language Analysis through Integration of Single-Language Analyses ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

1 function js2javaValue(jsObject):

2 jsPointsToSet = jsObject.pointsToSet

3 javaPointsToSet = js2JPointsToSet(jsPointsToSet)

4 return javaPointsToSet

5

6 function js2JPointsToSet(jsPointsToSet):

7 result = EmptySet

8 foreach jsElement ∈ jsPointstoSet:

9 jElement = translatePtsToJS2J(jsElement)

10 result.add(jElement)

11 return result

12

13 function translatePointsToSetJS2J(jsElement):

14 information = jsElement.getInformation

15 jElement = createNewJElement(information)

16 return jElement

Listing 5: JavaScript-to-Java Translator (Pseudocode)

Whenever the analysis needs results for a cross-language inter-
action, the detector for the respective foreign language queries the
most up-to-date results from the coordinator (cf. Line 12 in both List-
ing 3 and Listing 4). Due to potential mutually-recursive language
interactions, these results may not be final. Hence, start returns
an intermediate result and the list of queried results on which this
results depends. Accordingly, the return type of the start method
in the Connector interface is a pair of a Result value (final or
intermediate) and a set of dependencies. Intermediate results are
potentially unsound under-approximations to be further refined
until sound. The coordinator stores the result and provides it to
other analyses upon demand; it also registers the dependencies on
other analyses’ results and invokes resume whenever a (new) value
for a registered dependency becomes available.

Method resume returns an updated result and any remaining
or new dependencies to the coordinator. The coordinator updates
the result in its internal state and registers the dependencies. Inter-
leaved execution can go back and forth until a global fixed-point is
reached and the computed results become final.

3.2 Component Interaction
We illustrate how AXA’s components interact at the example of
analyzing method calc from Listing 1. The steps for analyzing this
method are shown in Figure 2. We assume the integration of ex-
isting single-language analyses for Java (analysisJ ) and JavaScript
(analysisJS) into AXA. They are respectively extended by detec-
tors (detectorJ,JS and detectorJS,J ) and wrapped into connectors
(connectorJ and connectorJS), together composing Java Analysis
and JS Analysis respectively (cf. Section 3.1). (translatorJS,J ) trans-
lates between the analyses’ representations in both directions.

First, the coordinator starts Java Analysis through connectorJ
(J1). detectorJ,JS detects the cross-language interaction of Java with
JavaScript through the ScriptEngine in Line 6 of Listing 1 (SE6).
It proceeds to collect information about the interaction, such as the
values set via the put method (Line 7) and the code string passed

coordinator Java Analysis translatorJS,J JS Analysis

J1: Start

J2: Query JS Result

J3: JS Bottom Value

J4: Transl. JS Value

J5: Return Java Value

J6: Return Java Result

JS1: Start

JS2: Return JS Result

parallel

J7: Resume with JS Result

J8: Transl. JS Value

J9: Return Java Value

J10: Return Java Result

Figure 2: Component Interaction

to the ScriptEngine’s eval method (Line 9). detectorJ,JS also en-
counters that get, which returns a JavaScript value, is invoked on
SE6 (Line 10). It thus queries the coordinator for analysis results of
the interaction of SE6 to determine the value returned (J2).

However, at this point analysisJS has not yet been started, so
no results for SE6 are available. Hence, the coordinator returns an
empty points-to set (i.e., the respective lattice’s bottom value) for
the JavaScript value result, represented in the lattice of analysisJS
(J3). To convert this value to the lattice expected by analysisJ (J4),
detectorJ,JS uses the JavaScript-Java translator translatorJS,J . It then
continues with the analysis (J5). Using the translated empty points-
to set, analysisJ can complete its computation; it sets the points-to
set of the Java variable r to empty (cf. Line 10) and returns a result
to the coordinator (J6). This result is not final as it is based upon
the bottom value from (J3). Thus, analysisJ , alongside its result,
returns to the coordinator a dependency on that value.

Concurrently, the coordinator has started execution of JS Anal-
ysis via connectorJS (JS1). For simplicity, we assume that the points-
to set of the JavaScript values x and y can be computed directly,
i.e., the figure does not illustrate the analysis of the accesses from
JavaScript to Java occurring in Line 9. Thus, analysisJS completes
and returns its result to the coordinator (JS2). The coordinator now
resumes Java Analysis via connectorJ and makes the newly com-
puted JavaScript analysis result available to Java Analysis (J7).

1199



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini

detectorJ,JS invokes translatorJS,J to convert this JavaScript points-
to set to the lattice expected by analysisJ (J8, J9). analysisJ uses
this updated result to update the points-to set of Java variable r (cf.
Line 10) and returns the final result to the coordinator (J10).

3.3 Analysis Integration Requirements
After we have elaborated how AXA enables to integrate analyses,
we will now describe what is required to integrate an existing anal-
ysis framework into AXA. First, AXA requires that an integrated
analysis:
• has its own fixed-point solver and
• starts with the bottom value of its respective lattice (i.e., is an
optimistic analysis)

Second, to integrate a static analysis framework into AXA, one:
• adapts the lattice of the static analysis framework,
• adapts the fixed-point solver of the static analysis framework,
• extends the analyses with detectors,
• wraps each integrated analysis with a connector, and
• writes translators to translate between analysis representations

Third, additional minor changes may be required depending on the
framework. This may, e.g., include enabling extensibility through
making private fields or methods public.

Not all of these steps are necessary for every framework or
language pair, e.g., if native method calls are already recognized by a
Java analysis, no further detector for this cross-language interaction
may be necessary. The integration process will be described in
further detail using a case study in Section 4.1.

4 EVALUATION
Our evaluation1 aims to answer the following research questions:
RQ1 What effort is needed to integrate existing analyses, and to

what extent can they be reused?
RQ2 Can the implementation handle all identified kinds of cross-

language interaction?
RQ3 Can AXA multi-language analyses improve recall over the

integrated single-language analyses without compromising
precision?

4.1 Reusability of Single-Language Analyses
To showcase the required effort to integrate existing static analysis
frameworks into AXA (RQ1), we implemented AXA as an extension
of the OPAL static analysis framework2 [7] and used it to implement
a cross-language points-to analysis for analyzing Java programs
that embed JavaScript code via the Java ScriptEngine and call
native methods via the Java Native Interface. We chose a points-
to analysis as our use case, because it is a prerequisite for many
other analyses, e.g., advanced call-graph analyses, and is a complex
analysis of its own that is not trivially compositional.

OPAL’s blackboard architecture enables executing multiple de-
coupled analysis modules in an interleaved manner [7, 9]. Analyses
exchange their results via a central data store called the blackboard
until a global fixed-point is reached. OPAL’s blackboard provides

1Artifact available at https://doi.org/10.5281/zenodo.13364690
2https://opal-project.de

all features needed to implement AXA’s coordinator. Our cross-
language points-to analysis reuses respective single-language anal-
yses from OPAL, TAJS3 [8], and SVF4 [27], three state-of-the-art
static analysis frameworks for Java, JavaScript, and LLVM bitcode
respectively. The analysis information differs between the analyses:
pointer, call-graph, and string information for Java and LLVM, and a
reduced product over abstractions of each JavaScript type. Further-
more, the Java and LLVM analyses are flow-insensitive, whereas the
JavaScript analysis is flow-sensitive. In the following, we elaborate
on what we did to integrate these analyses; Table 1 quantifies the
effort in terms of LOCs (lines of code).

Java Analysis. To analyze Java code, we reused the points-to
analysis of OPAL. Since the latter already uses the blackboard archi-
tecture also used to implement AXA, we did not need to implement
a connector or adapt its fixed-point algorithm. OPAL already iden-
tifies native method calls in its call graphs, thus, no detector or
lattice extension is required for native method calls. To analyze
Java-to-JavaScript interactions, we extended OPAL’s points-to anal-
ysis with detectorJ,JS for JavaScript code that is executed via the
Java ScriptEngine. detectorJ,JS handles the ScriptEngine meth-
ods eval, put, and get and was implemented as an OPAL points-to
analysis module, comprising 836 LOCs. Furthermore, we extended
OPAL’s data store with a new lattice for interactions with JavaScript
via Java’s ScriptEngine (60 LOCs). The lattice elements aggregate
all relevant information such as the allocation site of the particular
ScriptEngine, the JavaScript code that the engine evaluates via
eval, and the JavaScript values set via put. Overall, we added 896
LOCs to the OPAL points-to analysis, corresponding to 0.6% of
the original OPAL code (155 101 LOCs), i.e., 99.4% of the code was
reused. Most of the additional code handles the inherent complexity
of analyzing the ScriptEngine interface, which is necessary for
any cross-language interaction of this interface, i.e., not overhead
introduced by AXA.

JavaScript Analysis. To analyze JavaScript code, we integrated
the TAJS framework. TAJS has a fixed-point solver operating with
a worklist algorithm and an intermediate representation on which
the fixed-point solver runs the transfer functions implemented in
the NodeTransfer class. This class plays the visitor role in a visitor
pattern, visiting the elements of the intermediate representation,
e.g., nodes for variable declarations, method calls, or property/value
reads and writes.

We implemented the Java detector, detectorJS,J , in a class that
inherits from TAJS’ NodeTransfer, extending the behavior of five
visitor methods that are responsible for handling method calls and
variable/property reads andwrites. detectorJS,J comprises 166 LOCs,
including code to access AXA’s state via the connector connectorJS .
detectorJS,J needs to access AXA’s state in order to query the actual
points-to sets of Java values that are accessed in JavaScript (cf. Fig-
ure 3). To make the analysis use detectorJS,J , with the original and
extended visitor methods instead of NodeTransfer, we modified
one line (counted as 2 changed LOCs, 1 deletion and 1 addition)
that sets the transfer functions in TAJS. We added new node types
to TAJS’ internal representation to represent Java objects and types

3https://www.brics.dk/TAJS/
4https://svf-tools.github.io/SVF/

1200



AXA: Cross-Language Analysis through Integration of Single-Language Analyses ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Analysis Detector Lattice Solver Connector Translator (to Java) Total (Framework)
Java 836 (JS), 0 (Native) 60 (JS) 0 0 - 896 (0.6% of OPAL)
JavaScript 166 + 2 90+14 2 452 137 863 (1.4% of TAJS)
Native 328 107 16 1 025 16 1 492 (1.9% of SVF)

Table 1: Extensions and Changes of Single-Language Analyses for Integration into AXA

(90 LOCs). To support these new node types, we had to extend
the existing visitor classes (14 LOCs). Finally, we removed 2 LOCs
to prevent TAJS’ fixed-point solver from clearing the initial state.
This allows connectorJS to set TAJS’ initial state before starting the
analysis. This initial state contains, e.g., JavaScript values set by
ScriptEngine’s put method. Finding the place where the fixed-
point solver clears the initial state was straightforward, because
TAJS’ fixed-point solver is a standard work-list algorithm.

To recap, for integrating TAJS into AXA, we added or changed a
total of 274 LOCs. Together with connectorJS that wraps TAJS to
interact with AXA’s coordinator (452 LOCs), and translatorJS,J that
translates between the points-to representations of TAJS and OPAL
(137 LOCs), this totals to 863 LOCs changed in or added to AXA
and TAJS to integrate the points-to analyses of OPAL and TAJS.
These additions and changes (less than 1 000 LOCs) are negligible
compared to TAJS overall code size (60 321 LOCs), just 1.4%.

Native Analysis. We use SVF’s Andersen-style points-to analysis
in Solver𝑆𝑉 𝐹 to implement a fixed-point analysis on points-to sets.
We extend SVF’s points-to-set lattice by adding additional node
types to SVF’s Pointer Assignment Graph (PAG) to represent Java al-
location sites. The solver, outlined in Listing 7, executes detectorN ,J
and Andersen until a fixed-point is reached.

1 Andersen()

2 while (any points-to set has changed):

3 detector𝑁,𝐽 ()

4 Andersen()

Listing 7: SVF Fixed-Point Solver (Pseudocode)

We implemented detectorN ,J (328 LOCs) to detect and resolve
Java method calls and field accesses. SVF’s points-to analysis was
used to recover class, field, and method names from JNI interac-
tions as shown in Listing 2. Our changes to the SVF lattice comprise
107 LOCs. Implementing Solver𝑆𝑉 𝐹 (16 LOCs) was trivial, while
detectorN ,J required the most effort. connectorN (1 025 LOCs) com-
municates points-to sets for call-site parameters and field writes to
analysisJ and receives points-to sets for method return values and
field reads. connectorN consists mostly of standard JNI code that
makes SVF (implemented in C++) accessible to OPAL. translatorJ,N
(16 LOCs) finally manages a mapping between Java allocation sites
and SVF PAG nodes to translates between the points-to sets of
OPAL and SVF. This totals 1 492 changed or added LOCs, 1.9 % of
SVF’s 76 801 LOCs.

Summary. The summary of the changed and added LOCs in
Table 1 clearly demonstrates that AXA enables reusing existing
work to a significant extent. While the static analysis frameworks
we integrated were not built for being reused within AXA, the
required changes to integrate them were minor compared to the

complexity of the reused analyses, allowing AXA to tap into analy-
ses developed, tested, and improved over years by experts in the
respective languages and analyses. We were able to repurpose SVF
and TAJS, two frameworks with largely different implementations
and purposes, for cross-language analysis with AXA.

The design of TAJS, with its worklist algorithm and transfer
functions following the visitor pattern, made it easier to extend
compared to SVF. This design allowed incorporating cross-language
values into TAJS’ lattice during the main solver loop. We were
able to preset the analysis state before execution and extend the
analysis results during solver iterations by adding new visitors and
extending existing ones for the added lattice elements. Conversely,
SVF’s points-to analysis is not inherently extensible. In order to
integrate cross-language values into SVF’s points-to analysis, we
had to develop a custom fixed-point solver where SVF’s points-to
analysis is executed at every step, with cross-language values added
to the initial state of the succeeding points-to analysis step.

Our case study shows the importance of extensible software
design. Support for cross-language analyses has so far not been
a primary objective in the design of static analysis frameworks.
However, adapting static analyses for an integration into AXA
increases their relevance and allows them to be reused for analyses
across language borders.We encourage developers of static analyses
to consider support for cross-language analyses in their designs. To
simplify integration into AXA, the analyses should provide: 1) the
ability to preset the analysis state, 2) the capability to extend the
analysis lattice, and 3) the flexibility to extend analysis behavior to
recognize cross-language interactions during solver execution.

■ Changes required to integrate existing static analyses into AXA
are minor compared to the complexity of these analyses. Reusing
existing analyses in AXA allows access to years of research and
development, thus saving major effort to reimplement analyses with
the same soundness and precision level as existing state of the art
analyses.

4.2 Handling Cross-Language Interactions
Answering RQ2, whether our implementation can handle all iden-
tified kinds of cross-language interaction, requires a ground truth
of multi-language code. To the best of our knowledge, no ground-
truth benchmark for cross-language analysis of Java/JavaScript
multi-language programs exists. Regarding Java/Native, the mi-
crobenchmark of Lee et al. [16] consists of Android applications
with JNI calls, but the reused analyses from OPAL are not suited
for Android applications. Related work by Li et al. [18] also uses
a hand-crafted test suite to validate their cross-language analysis,
but targets multi-language programs in Java and Python.

1201



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini

Thus, we created AXA-Benchmark, the first cross-language-
analysis benchmark featuring non-Android-Java programs that
execute JavaScript and interact with native code. The benchmark
was created with the following methodology. One author searched
for literature initially in Google Scholar using keywords related
to cross-language analysis, e.g., “cross-language static analysis”
and “multi language static analysis”. We studied the resulting peer-
reviewed papers and their references and categorized them in Sec-
tion 5. From this study, we derived the benchmark categories. The
individual test cases were derived from both studying real-world
code and based on the authors multi-year experience with static
analyses. Test cases were implemented by two authors that checked
and supplemented each other’s work. To the best of our knowl-
edge, we considered all relevant cases of cross-language interaction
patterns. The small number of test cases for the JNI Java-to-native
interface is due to the simplicity of this interface.

4.2.1 Benchmark. AXA-Benchmark5 contains a total of 56 test
cases, grouped into five categories of cross-language interaction
patterns that we identified:

• Unidirectional Execution: Java code executes either na-
tive or JavaScript code. Native methods are called explicitly,
JavaScript code is executed via the eval method of Java’s
ScriptEngine.

• Interleaved Execution: Java code executes JavaScript or
native code, which in turn calls static or virtual Java meth-
ods. In native code, Java virtual methods are called on ob-
jects instantiated using JNI or method parameters passed
from Java. In JavaScript, Java virtual methods are called on
Java objects instantiated in JavaScript code or passed via the
ScriptEngine’s put method.

• Mutual Recursion: Advanced test cases involving recur-
sion: A Java method f calls a native method or executes
JavaScript code, which in turn invokes f recursively. Such
recursion creates cyclic dependencies between the analyses
(cf. Section 2).

• Unidirectional State Access: Java code that accesses or
manipulates the state of native or JavaScript code or vice-
versa. Native code accesses Java’s state via field writes. For
JavaScript, state access is implemented through the Java
ScriptEngine’s put and get methods and through reads
and writes to Java fields, both instance and static, from
JavaScript code, respectively.

• Bidirectional State Access: Advanced test cases that com-
bine the aforementioned state accesses for accesses from Java
to native or JavaScript code and vice versa. Cases include
independent unidirectional state accesses, as well as state
accesses that pass the same references in both directions,
potentially creating cyclic dependencies (cf. Section 2).

Each test case is implemented as an executable Java class. That
class either creates a ScriptEngine instance to interact with locally
embedded JavaScript code through the methods put, eval, and get
or invokes native methods. The native methods are available in
executable LLVM files.

5https://github.com/stg-tud/AXABenchmark

1 @PointsToSet(line = 10,

2 mustAllocSites = {@AllocSite(line=8)}

3 )

4 void javaFunction(){

5 sem = new ScriptEngineManager();

6 se = sem.getEngineByName("JavaScript");

7 se.put("jThis", this);

8 this.myfield = new Object();

9 se.eval("var x = jThis.myfield;");

10 Object o = se.get("x");

11 }

12 Object myfield;

Listing 8: AXA-Benchmark Example Test Case

Category Passed/Test
JavaScript Native

Unidirectional Execution 15 / 16 2 / 2
Interleaved Execution 5 / 5 7 / 7
Mutual Recursion 2 / 4 1 / 1
Unidirectional State Access 6 / 6 4 / 4
Bidirectional State Access 7 / 9 2 / 2
Sum 35 / 40 16 / 16

Table 2: Benchmark Results

Furthermore, each category includes intra- and inter-procedural
test cases, i.e., executing Java ScriptEngine’s put, eval and get
methods located in a single Java method or across multiple methods.

We manually annotated the benchmark with expected points-
to sets of references affected by cross-language interactions. The
annotations specify expected allocation sites for method parame-
ters and local variables (fields are validated by assignment to local
variables). Listing 8 shows a simplified example of a test case with
the corresponding annotation. The annotation states that the Java
variable o (defined in Line 10) points to the Java object instanti-
ated in Line 8. To pass a test case, an implementation has to match
the annotated points-to set exactly, thereby verifying its ability to
correctly handle the cross-language interaction being tested.

4.2.2 Results. Table 2 shows AXA’s results on the benchmark:
AXA can handle all cross-language interaction patterns, passing
35/40 of Java/JavaScript test cases and 16/16 of Java/native test
cases. The higher number of JavaScript test cases is a result of the
more complex interface.

Two test cases in the Mutual Recursion category fail due to a
cross-language interaction inside a JavaScript function. Our im-
plementation of detectorJS,J only detects cross-language interac-
tions in the global scope of JavaScript, which is a deliberate limita-
tion to constrain the scope of our implementation. Two test cases
in the Bidirectional State Access category fail due to a limitation
of our implementation where translatorJS,J assigns the Java type
java.lang.Object to JavaScript objects. This leads to problems
in case they are passed back to JavaScript but can be solved by

1202



AXA: Cross-Language Analysis through Integration of Single-Language Analyses ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Java/JS Java/Native
Points-To Analysis OPAL AXA OPAL AXA

False Negatives 169 50 34 3
False Positives 1 1 0 0
Precision 99.7 % 99.8 % 100.0 % 100.0 %
Recall 66.1 % 90.6 % 54.7 % 96.1 %

Table 3: Precision And Recall of Points-To-Sets

introducing a mapping between Java and JavaScript points-to set
elements in connectorJS .

In summary, AXA passed most test-cases of all identified kinds
of cross-language interaction. This shows that our approach is ap-
plicable to relevant, dissimilar cross-language interaction patterns.
Failed test cases revealed opportunities for improving the imple-
mentation through further engineering effort, but do not affect
AXA’s applicability.

■ AXA can handle most test cases of all identified kinds of cross-
language interaction.

4.3 Precision and Recall
To answer RQ3, whether AXA can analyses can improve recall, we
compared the recall and precision of our cross-language points-to
analysis against OPAL’s single-language points-to analysis. For
RQ2, we manually annotated parameters and local variables im-
pacted by cross-language interactions, representing only a subset
of all reference variables in AXA-Benchmark’s codebase. For a
broader assessment of recall and precision, we implemented an
automated instrumentation which records values for all parameters
and definition sites, comparable to related work [20]. The instru-
mentation logs runtime information of reference variables (type
and instance id) together with the location of the instrumentation.
The recorded data provides a dynamically-recorded ground truth
for points-to-sets of all possible definition sites in AXA-Benchmark.

We validated the points-to sets obtained from both analyses,
OPAL’s Java-only analysis and AXA’s cross-language analysis,
against this ground truth. The results are presented in Table 3, with
Java/JS and Java/Native test cases measured separately. The code
required for the ScriptEngine instantiation resulted in compara-
bly more definition sites for Java/JS test cases. The cross-language
analysis significantly reduces the number of false negatives in com-
parison to OPAL’s single language points-to analysis. AXA was
able to significantly increase recall for both language combinations
without increasing the number of false positives.

Our cross-language analysis inherits one false positive from
OPAL’s Java points-to analysis, which incorrectly provides a points-
to set for an unreachable definition site.

■ AXA increases the recall of the integrated analyses without com-
promising precision.

4.4 Threats to Validity
Inmeasuring the reusability of existing analyses, we limit ourmetric
to added/changed LOCs (lines of code). To fully gauge the effort of

integrating an anlysis with AXA, an extensive representative user
study would be required. This, however, exceeds the scope of this
paper. Measuring LOCs still reveals important insights into how
far existing analysis code can be reused.

AXA-Benchmark contains testcases categorized into several in-
teraction patterns, yet we do not assert the completeness of these
patterns. With the benchmark based on a literature study and
checked by a second author, we are confident to have identified
relevant patterns.

We have not yet evaluated AXA on real-world code, except for
the Android app Droidzebra 6. This app consists of 50 Java- and
5 C-files. The analysis of Droidzebra took less than ten seconds,
finding and handling four Java-to-native and two native-to-Java
calls. A systematic evaluation of AXA on real-world benchmarks
remains for future work.

We also did not compare our implementation of AXA with other
state-of-the-art analyses, because to the best of our knowledge,
no state-of-the-art analysis can analyze both Java-Native interac-
tion and Java-JavaScript interaction via the Java ScriptEngine.
A direct comparison with the approach by Lee et al. [16], which
was evaluated through a microbenchmark consisting of Android
applications with JNI calls was not possible because of limitations
within OPAL’s analyses. We instead evaluated our implementa-
tion against OPAL’s single-language analysis, revealing how AXA
cross-language analyses improve recall.

5 RELATEDWORK
In this section, we discuss approaches to cross-language analysis.

Using Handcrafted Summaries for Foreign Function Calls. Many
frameworks like OPAL [7], Soot [12], and WALA [10] include hand-
crafted summaries of native methods in the Java Class Library. How-
ever, hand-crafting summaries is time-consuming and summaries
become invalid when summarized methods change. As a result, this
approach only applies to foreign code in widely-used libraries that
change only seldomly and not to multi-language application code.
In contrast, AXA does not require summaries because it reuses
single-language analyses for all analyzed languages.

Cross-Language Analyses Implemented in a Single Framework.
Some cross-language analyses are implemented within a single
static-analysis framework [3, 15, 21, 30]. For example, the WALA
analysis framework supports single-language Java and JavaScript
analyses. While WALA does not directly support for cross-language
interactions, Lee et al. [15] combined two single-language analyses
in WALA to a cross-language analysis called HybriDroid. Imple-
menting a cross-language analysis in a single framework achieves
a high level of integration and promises high precision and sound-
ness. However, when an analysis does not exist in the framework of
choice, it needs to be reimplemented; existing analyses outside the
framework cannot be reused. Such reimplementation results in the
duplication of possibly years of research and development effort, in
which precision, soundness, and performance have been carefully
fine-tuned. For instance, the JavaScript analysis framework TAJS
has been actively developed for more than 13 years [1, 8, 11, 24]. Fur-
thermore, porting existing analyses to other frameworks can also be

6https://f-droid.org/en/packages/com.shurik.droidzebra/

1203



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Tobias Roth, Julius Näumann, Dominik Helm, Sven Keidel, and Mira Mezini

difficult, because frameworks follow different analysis paradigms
and styles. In contrast, AXA allows reusing analyses implemented
in different frameworks, saving the effort of reimplementing analy-
ses within a single framework and allowing access to the results of
years of development effort.

Summary Reification. Yet other approaches implement cross-
language analyses by extracting summaries for guest-language code
and reifying them as code of a host-language. For example, Sui and
Xue [27] extract summaries for native JNI code with Facebook’s In-
fer analyzer [4], reify them as Java code, insert the code at the native
call site, and analyze the residual Java program with FlowDroid [2].
Lyons and Becaj [19] use a similar approach to implement a cross-
language taint analysis for Python and C using Infer/Quandry to
extract C summaries and Pyt for Python taint analysis. Lee et al.
[16] analyze multi-language programs written in Java and native
code by translating analysis summaries of native functions to Java
code. Summary reification allows reusing existing analyses, but it
also has several limitations:

• First, summary reification only works for cross-language in-
teractions with explicit language boundaries. Specifically, calls
from the host to the guest language must be easily detectable
before running the host analysis to insert the reified code at the
correct place in the host program (cf. [16, Section 6.4.]). How-
ever, cross-language interactions between Java and JavaScript
are implicit since Java to JavaScript calls are not easily dis-
tinguishable from intra-language Java calls and may contain
dynamic strings, making summary-reification unsuitable. AXA
solves this problem by detecting cross-language calls on-the-fly
while the analysis is running.

• Second, if there are cyclic dependencies across language bor-
ders, they cannot be trivially summarized. This can be dealt
with by full reanalysis until a fixed-point is reached, but this
requires significant amounts of recomputation. AXA instead
directly computes a cross-language fixed-point, avoiding re-
computation where possible.

• Third, summaries of the guest language must be soundly reifi-
able as code of the host language. However, this may not always
be possible if the guest language has complex or incompatible
semantics. For example, C’s manual memory management, un-
safe casts, and pointer arithmetic are not easily reifiable within
Java code. These features are over- or under-approximated
when reifying summaries, leading to imprecision and unsound-
ness. In contrast, AXA delegates the handling of complex lan-
guage features to single-language analyses, retaining their pre-
cision and soundness.

Translation into a Common Representation. Finally, some ap-
proaches translate all code of a multi-language program into a uni-
fied representation, then analyze this representation. JScan [6] trans-
lates C, C++, and Java to LLVM intermediate representation (LLVM
IR) [14], while Lara [28] translates C, C++, Java, and JavaScript
to a custom object-oriented language. To create library depen-
dency graphs, Shatnawi et al. [26] translate all components of
multi-language Java Enterprise Edition applications into a com-
mon meta-model. LiSa’s [22] front-ends translate all parts of a

program written in different languages into a common internal rep-
resentation. However, translating multi-language programs into a
unified representation loses high-level information from the source
languages, rendering these analyses less precise and less sound. For
example, single-language analyses for Java typically handle reflec-
tion explicitly for better precision and soundness. By translating
Java code to an intermediate representation like LLVM IR, reflec-
tion is now handled generically by an LLVM analyzer, leading to
reduced precision and soundness. In contrast, AXA analyzes each
language individually without a need for translation and hence
avoiding a precision and soundness penalty.

6 CONCLUSION
In this paper, we proposed AXA, an approach that enables imple-
menting cross-language analyses by integrating existing tried and
tested single-language analyses from different frameworks. We im-
plemented AXA in the static analysis framework OPAL and used
OPAL’s blackboard as the coordinator.

To evaluate AXA, we implemented a cross-language points-to
analysis for Java applications that interact with JavaScript code via
Java’s ScriptEngine and with native code via the Java Native Inter-
face (JNI). To this end, we integrated the points-to analysis of OPAL
for Java, the JavaScript analysis TAJS, and the points-to analysis of
SVF for LLVM bitcode. AXA allowed substantial reuse (over 98%) of
the integrated analyses. Additionally, we created AXA-Benchmark,
a hand-crafted benchmark of relevant cross-language interaction
patterns between Java, JavaScript, and native code. Our evaluation
showed that AXA supports complex interactions and significantly
increased the recall of the integrated analyses without compromis-
ing precision. Last but not least, we established requirements for
integrating further static analyses. This can guide developers during
the development of static analysis frameworks to ease integration
into AXA and, as a result, increase the relevance of the integrated
static analyses as they can then be used on multi-language software.

In the future, we will develop further analyses, e.g., data-flow
analyses, on top of AXA as well as integrate existing analysis tools
formore languages, e.g.,WebAssembly. Furthermore, wewill extend
our implementation to deal with other cross-language interfaces,
like remote method invocations.

ACKNOWLEDGMENTS
This work was supported by the DFG as part of CRC 1119 CROSS-
ING, by the German Federal Ministry of Education and Research
(BMBF) as well as by the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within their joint support of
the National Research Center for Applied Cybersecurity ATHENE.

REFERENCES
[1] Esben Andreasen and Anders Møller. 2014. Determinacy in static analysis for

jQuery. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH
2014, Portland, OR, USA, October 20-24, 2014, Andrew P. Black and Todd D. Mill-
stein (Eds.). ACM, 17–31. https://doi.org/10.1145/2660193.2660214

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. 2014.
FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June

1204



AXA: Cross-Language Analysis through Integration of Single-Language Analyses ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

[3] Achim D. Brucker and Michael Herzberg. 2016. On the Static Analysis of Hybrid
Mobile Apps - A Report on the State of Apache Cordova Nation. In Engineering
Secure Software and Systems - 8th International Symposium, ESSoS 2016, London,
UK, April 6-8, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9639),
Juan Caballero, Eric Bodden, and Elias Athanasopoulos (Eds.). Springer, 72–88.
https://doi.org/10.1007/978-3-319-30806-7_5

[4] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2009.
Compositional shape analysis by means of bi-abduction. In Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C.
Pierce (Eds.). ACM, 289–300. https://doi.org/10.1145/1480881.1480917

[5] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. 2005. The ASTREÉ Analyzer. In Programming
Languages and Systems, 14th European Symposium on Programming, ESOP 2005,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings (Lecture Notes in Computer
Science, Vol. 3444), Shmuel Sagiv (Ed.). Springer, 21–30. https://doi.org/10.1007/
978-3-540-31987-0_3

[6] Andrea Fornaia, Stefano Scafiti, and Emiliano Tramontana. 2019. JSCAN: De-
signing an Easy to use LLVM-Based Static Analysis Framework. In 28th IEEE
International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises, WETICE 2019, Naples, Italy, June 12-14, 2019, Sumitra Reddy (Ed.).
IEEE, 237–242. https://doi.org/10.1109/WETICE.2019.00058

[7] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
2020. Modular collaborative program analysis in OPAL. In ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann (Eds.). ACM, 184–196.
https://doi.org/10.1145/3368089.3409765

[8] Simon Holm Jensen, Anders Møller, and Peter Thiemann. 2009. Type Analysis
for JavaScript. In Static Analysis, 16th International Symposium, SAS 2009, Los
Angeles, CA, USA, August 9-11, 2009. Proceedings (Lecture Notes in Computer
Science, Vol. 5673), Jens Palsberg and Zhendong Su (Eds.). Springer, 238–255.
https://doi.org/10.1007/978-3-642-03237-0_17

[9] Sven Keidel, Dominik Helm, Tobias Roth, and Mira Mezini. 2024. A Modular
Soundness Theory for the Blackboard Analysis Architecture. In Programming
Languages and Systems - 33rd European Symposium on Programming, ESOP 2024,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 14577), Stephanie Weirich (Ed.). Springer,
361–390. https://doi.org/10.1007/978-3-031-57267-8_14

[10] Rahul Krishna, Raju Pavuluri, Saurabh Sinha, Divya Sankar, Julian Dolby, and
Rangeet Pan. 2023. Towards Supporting Universal Static Analysis usingWALA. In
ACM SIGPLAN Conference on Programming Language Design and Implementation.

[11] Erik Krogh Kristensen and Anders Møller. 2019. Reasonably-most-general clients
for JavaScript library analysis. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 83–93.
https://doi.org/10.1109/ICSE.2019.00026

[12] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), Vol. 15.

[13] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for
Static Analysis of Java Reflection – Literature Review and Empirical Study. In
2017 IEEE/ACM 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE’17). IEEE, 507–518.

[14] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.
2004.1281665

[15] Sungho Lee, Julian Dolby, and Sukyoung Ryu. 2016. HybriDroid: static analysis
framework for Android hybrid applications. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM,
250–261. https://doi.org/10.1145/2970276.2970368

[16] Sungho Lee, Hyogun Lee, and Sukyoung Ryu. 2020. Broadening Horizons of
Multilingual Static Analysis: Semantic Summary Extraction from C Code for
JNI Program Analysis. In 35th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE,
127–137. https://doi.org/10.1145/3324884.3416558

[17] Wen Li, NaMeng, Li Li, andHaipeng Cai. 2021. Understanding Language Selection
in Multi-language Software Projects on GitHub. In 43rd IEEE/ACM International
Conference on Software Engineering: Companion Proceedings, ICSE Companion
2021, Madrid, Spain, May 25-28, 2021. IEEE, 256–257. https://doi.org/10.1109/ICSE-

Companion52605.2021.00119
[18] Wen Li, Jiang Ming, Xiapu Luo, and Haipeng Cai. 2022. PolyCruise: A Cross-

Language Dynamic Information Flow Analysis. In 31st USENIX Security Sympo-
sium (USENIX Security 22). USENIX Association, Boston, MA, 2513–2530.

[19] Damian M. Lyons and Dino Becaj. 2021. A Meta-level Approach for Multilingual
Taint Analysis. In Proceedings of the 16th International Conference on Software
Technologies, ICSOFT 2021, Online Streaming, July 6-8, 2021, Hans-Georg Fill,
Marten van Sinderen, and Leszek A. Maciaszek (Eds.). SCITEPRESS, 69–77. https:
//doi.org/10.5220/0010543800690077

[20] MarkusMock, Manuvir Das, Craig Chambers, and Susan J. Eggers. 2001. Dynamic
Points-to Sets: A Comparison with Static Analyses and Potential Applications
in Program Understanding and Optimization. In Proceedings of the 2001 ACM
SIGPLAN-SIGSOFTWorkshop on Program Analysis for Software Tools and Engineer-
ing (Snowbird, Utah, USA) (PASTE ’01). Association for Computing Machinery,
New York, NY, USA, 66–72. https://doi.org/10.1145/379605.379671

[21] Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. 2021. AMultilanguage
Static Analysis of Python Programs with Native C Extensions. In Static Analysis
- 28th International Symposium, SAS 2021, Chicago, IL, USA, October 17-19, 2021,
Proceedings (Lecture Notes in Computer Science, Vol. 12913), Cezara Dragoi, Suvam
Mukherjee, and Kedar S. Namjoshi (Eds.). Springer, 323–345. https://doi.org/10.
1007/978-3-030-88806-0_16

[22] Luca Negrini, Pietro Ferrara, Vincenzo Arceri, and Agostino Cortesi. 2023. LiSA:
a generic framework for multilanguage static analysis. In Challenges of Software
Verification. Springer, 19–42.

[23] Allen Newell. 1962. Some problems of basic organization in problem-solving
programs. Rand Corporation.

[24] Benjamin Barslev Nielsen and Anders Møller. 2020. Value Partitioning: A Light-
weight Approach to Relational Static Analysis for JavaScript. In 34th European
Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and To-
bias Pape (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 16:1–16:28.
https://doi.org/10.4230/LIPIcs.ECOOP.2020.16

[25] Joanna C. S. Santos and Julian Dolby. 2022. Program analysis using WALA
(tutorial). In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, Abhik Roychoudhury, Cristian
Cadar, and Miryung Kim (Eds.). ACM, 1819. https://doi.org/10.1145/3540250.
3569449

[26] Anas Shatnawi, Hafedh Mili, Manel Abdellatif, Yann-Gaël Guéhéneuc, Naouel
Moha, Geoffrey Hecht, Ghizlane El Boussaidi, and Jean Privat. 2019. Static code
analysis of multilanguage software systems. arXiv preprint arXiv:1906.00815
(2019).

[27] Yulei Sui and Jingling Xue. 2020. Value-Flow-Based Demand-Driven Pointer
Analysis for C and C++. IEEE Trans. Software Eng. 46, 8 (2020), 812–835. https:
//doi.org/10.1109/TSE.2018.2869336

[28] Gil Teixeira, João Bispo, and Filipe F. Correia. 2021. Multi-language static code
analysis on the LARA framework. In SOAP@PLDI 2021: Proceedings of the 10th
ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis,
Virtual Event, Canada, 22 June, 2021, Lisa Nguyen Quang Do and Caterina Urban
(Eds.). ACM, 31–36. https://doi.org/10.1145/3460946.3464317

[29] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie J. Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java bytecode optimization framework. In Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on Collaborative
Research, November 8-11, 1999, Mississauga, Ontario, Canada, Stephen A. MacKay
and J. Howard Johnson (Eds.). IBM, 13.

[30] Dongjun Youn, Sungho Lee, and Sukyoung Ryu. 2023. Declarative static analysis
for multilingual programs using CodeQL. Softw. Pract. Exp. 53, 7 (2023), 1472–1495.
https://doi.org/10.1002/spe.3199

1205


