
Unimocg: Modular Call-Graph Algorithms for Consistent
Handling of Language Features

Dominik Helm
ATHENE

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
helm@cs.tu-darmstadt.de

Tobias Roth
ATHENE

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
roth@cs.tu-darmstadt.de

Sven Keidel
Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany

Michael Reif
CQSE GmbH

Darmstadt, Germany
reif@cqse.eu

Mira Mezini
ATHENE
hessian.AI

Department of Computer Science
Technische Universität Darmstadt

Darmstadt, Germany
mezini@cs.tu-darmstadt.de

ABSTRACT

Traditional call-graph construction algorithms con�ate the com-
putation of possible runtime types with the actual resolution of
(virtual) calls. This tangled design impedes supporting complex lan-
guage features and APIs and making systematic trade-o�s between
precision, soundness, and scalability. It also impedes implementa-
tion of precise downstream analyses that rely on type information.

To address the problem, we propose Unimocg, a modular archi-
tecture for call-graph construction that decouples the computation
of type information from resolving calls. Due to its modular de-
sign, Unimocg can combine a wide range of di�erent call-graph
algorithms with algorithm-agnostic modules to support individual
language features. Moreover, these modules operate at the same
precision as the chosen call-graph algorithm with no further e�ort.
Additionally, Unimocg allows other analyses to easily reuse type
information from the call-graph construction at full precision.

We demonstrate howUnimocg enables a framework of call-graph
algorithmswith di�erent precision, soundness, and scalability trade-
o�s from reusable modules. Unimocg currently supports ten call-
graph algorithms from vastly di�erent families, such as CHA, RTA,
XTA, and :-;-CFA. These algorithms show consistent soundness
without sacri�cing precision or performance. We also show how
an immutability analysis is improved using Unimocg.

CCS CONCEPTS

• Software and its engineering → Abstraction, modeling and

modularity; Automated static analysis; • Theory of computa-

tion → Program analysis.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3652109

KEYWORDS

Call Graph, Type Analysis, Static Analysis, Modularization

ACM Reference Format:

Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini.
2024. Unimocg: Modular Call-Graph Algorithms for Consistent Handling
of Language Features. In Proceedings of the 33rd ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’24), September 16–20,

2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages. https://doi.org/
10.1145/3650212.3652109

1 INTRODUCTION

Sound and precise call graphs are a prerequisite for inter-procedural
static analysis. Over the past decades, dozens of call-graph algo-
rithms for object-oriented programming languages have been pro-
posed [1, 4, 9, 24, 29]. However, their implementations have incon-
sistent support for crucial language features, e.g., re�ection, serial-
ization, or threads—they often support these features unsoundly,
or not at all [16, 17, 26].

Table 1 shows the state of a�airs for theWALA [11] and Soot [30]
frameworks. We generated the table by reproducing Reif et al.’s [16]
study of soundness1 of JVM-language call-graph algorithms. We
used the current version of their benchmark2—a suite of manu-
ally annotated tests—and current versions of WALA (1.5.7) and
Soot (4.4.1) for the call-graph algorithms Class-Hierarchy Analysis

(CHA) [4], Rapid-Type Analysis (RTA) [1], Control-Flow Analysis

(CFA) [24], and Soot’s default con�guration of SPARK [13].
While the exact numbers have changed, the overall picture stays

the same as reported by Reif et al. [16]: Language feature support
varies signi�cantly not only across frameworks but even across
algorithms within the same framework. In general, more precise
call-graph algorithms become less sound. All call-graph algorithms
of WALA and Soot fail to soundly analyze about half of the test
cases. For some features, call-graph algorithms even fail all test

1None of these call-graph algorithms are sound in the mathematical sense. In this
paper, we refer to the term soundness as a lower number of missing edges in call graphs.
This is in line with related work [16, 26].
2https://github.com/opalj/JCG

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

51

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0004-6425-8630
https://orcid.org/0000-0001-6561-0430
https://orcid.org/0000-0002-4278-2181
https://orcid.org/0000-0002-7561-5750
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.1145/3650212.3652109
https://doi.org/10.1145/3650212.3652109
https://doi.org/10.1145/3650212.3652109
https://github.com/opalj/JCG

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

Table 1: Soundness of call-graphs for di�erent JVM features

WALA Soot

Feature CHA RTA 0-CFA CHA RTA SPARK

Non-virtual Calls 6/6 6/6 6/6 6/6 6/6 6/6
Virtual Calls 4/4 4/4 4/4 4/4 4/4 4/4
Types 6/6 6/6 6/6 6/6 6/6 6/6
Static Initializer G# 4/8 G# 7/8 G# 6/8 G# 7/8 G# 7/8 G# 7/8
Java 8 Interfaces 7/7 7/7 7/7 7/7 7/7 7/7
Unsafe 7/7 7/7 # 0/7 7/7 7/7 # 0/7
Class.forName G# 2/4 4/4 4/4 G# 2/4 G# 2/4 G# 2/4
Sign. Polymorph. # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7
Java 9+ 2/2 G# 1/2 G# 1/2 2/2 2/2 2/2
Non-Java 2/2 2/2 2/2 # 0/2 # 0/2 # 0/2
MethodHandle G# 2/9 G# 2/9 # 0/9 G# 2/9 G# 2/9 # 0/9
Invokedynamic # 0/16 G# 10/16 G# 10/16 G# 11/16 G# 11/16 G# 11/16
Re�ection G# 2/16 G# 3/16 G# 6/16 G# 2/16 G# 2/16 # 0/16
JVM Calls G# 2/5 G# 3/5 G# 3/5 G# 4/5 G# 4/5 G# 3/5
Serialization G# 3/14 G# 1/14 G# 1/14 G# 3/14 G# 1/14 G# 1/14
Library Analysis G# 2/5 G# 2/5 G# 1/5 G# 2/5 G# 2/5 G# 2/5
Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4 # 0/4
DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

Sum (out of 123) 51 (41%) 65 (53%) 57 (46%) 65 (53%) 63 (51%) 51 (41%)

Algorithms within each framework are ordered by increasing precision
Soundness: all , someG#, or no# test cases passed soundly

cases, an indication that they may not support the feature explicitly.
In some cases, less precise call-graph algorithms like CHA and RTA
pass tests due to excessive imprecision rather than to actual feature
support. Surprisingly, WALA’s CHA is not only less precise but
apparently also less sound than WALA’s RTA. The inconsistent
support of language features makes it di�cult for users to system-
atically choose an appropriate call-graph algorithm. One has to
know in detail which language features each algorithm supports
soundly and cannot decide based on precision and performance
alone. This also makes it di�cult for researchers to compare call-
graph algorithms and implementations in terms of precision and
performance.

In this paper, we analyze reasons for this observed inconsistency
and propose a solution to the problem. In short, the problem is that
di�erent call-graph algorithms handle language features in speci�c
ways by making speci�c use of di�erent kinds of information they
have access to. For example, a CFA algorithm can soundly handle
more re�ection calls because it has access to pointer information.
CHA and RTA handle re�ection di�erently because they do not
have access to pointer information. As a result, code that handles
call resolution for individual language features is coupled to spe-
ci�c call-graph algorithms, which makes it di�cult to reuse that
code across di�erent call-graph algorithms. Developers wanting to
support new language features have to duplicate code to support
dissimilar algorithms. Thus, the available resources and priorities
of developers of a certain framework determine which features are
supported by which algorithm; maintenance is also complicated as
features evolve.

The work presented in this paper demonstrates that it is possible
to implement a variety of call-graph algorithms with consistent
handling of language features. Speci�cally, we propose Unimocg
(UNI�ed MOdular Call Graphs), a novel architecture for modular
implementation of call-graph algorithms that decouples the im-
plementation of the following concerns: (1) computation of type
information, (2) interpretation of type information, (3) resolution

Type Producer

Instantiated-Types Analysis Points-To Analysis . . .

Type Iterator

CHA RTA XTA MTA FTA CTA CFA . . .

Call Resolver

Virtual Calls Re�ection

Serialization Threads . . .

Type Consumer

Immutability Analysis

. . .

Arrows indicate dependencies between components

Figure 1: Unimocg’s modular call-graph architecture

of calls, and (4) analyses that depend on type information. Fig. 1
overviews the components that handle these concerns in Unimocg
and their relations.

Type producers compute information about the runtime types of
variables and �elds. Type iterators interpret this type information
and make it available to call resolvers and type consumers—keeping
them decoupled from type producers. Call resolvers resolve method
calls or calls of language features such as re�ection, serialization, or
threads. They query a type iterator for type information about call
receivers or arguments of re�ective calls; in turn, the information
about resolved method calls is used by type producers. Type con-
sumers are static analyses that depend on type information but do
not contribute to call-graph construction. Without type iterators,
type consumers would have to rely on imprecise type information,
e.g., provided by static types, to avoid dependence on a speci�c
call-graph algorithm. For instance, the immutability analysis by
Roth et al. [20] uses imprecise type information from static types
and the class hierarchy.

Unimocg’s modular architecture enables deriving call graphs
with consistent coverage of language features and hence soundness
by reusing and combining type producers, type iterator, and call
resolvers in a plug-n-play manner. We show that Unimocg enables
a wide range of call-graph algorithms to share the same support
for language features such as re�ection and serialization, thus en-
suring consistent soundness, by implementing ten algorithms from
di�erent families: CHA [4], RTA [1], the XTA family with MTA,
FTA, and CTA [29], as well as :-;-CFA-based algorithms 0-CFA,
0-1-CFA, 1-0-CFA, and 1-1-CFA [9].

Type consumers also bene�t from the modular architecture by
reusing precise type information computed for call-graph construc-
tion. To showcase this, we reimplemented the immutability analysis
by Roth et al. [20] as a type consumer in Unimocg. Unimocg’s sep-
aration of call-graph construction from the computation of type
information ensures consistent and improved precision of the im-
mutability analysis when combined with more precise call graphs.

Unimocg bene�ts both users and developers of static analyses
(call-graph and other analyses). Users can rely on consistent sound-
ness and can systematically choose appropriate algorithms for their

52

Unimocg: Modular Call-Graph Algorithms for Consistent Handling of Language Features ISSTA ’24, September 16–20, 2024, Vienna, Austria

respective applications considering only their intuition about the
relative precision and performance of di�erent algorithms. Analysis
developers, on the other hand, can easily extend Unimocg to sup-
port new language features across all available algorithms or add
new call-graph and/or other analysis algorithms while retaining all
available feature support.

As our evaluation shows, Unimocg’s bene�ts do not come at the
cost of precision or performance compared to state-of-the-art static
analysis frameworks.

In summary, we make the following contributions:

• We analyze the reasons for inconsistent soundness in state-
of-the-art call-graph algorithms (Section 2)

• We propose Unimocg, a novel architecture for implementing
call-graph analyses modularly (Section 3). Unimocg allows
deriving various call graphs with consistent soundness. In
particular, we show how resolution of features like re�ection
can be decoupled from the call-graph algorithm.

• We discuss how Unimocg bene�ts analyses that depend on
type information but do not participate in call-graph con-
struction (Section 3.5).

• We use Unimocg to implement families of di�erent call
graphs and measure soundness, precision, and performance
compared to the state of the art and evaluate their impact
on a state-of-the-art immutability analysis (Section 4).

The current implementation of Unimocg focuses on call-graph
construction for JVM languages, but the addressed problems and
the Unimocg architecture are language agnostic.

2 PROBLEM STATEMENT

We analyze two problems with existing call-graph algorithms re-
sponsible for the observed soundness inconsistency (Table 1).

Problem 1: Coupling of Call Resolution of Language Features to

Base Call-Graph Algorithms. Modern programming languages have
many features, which are di�cult to analyze. Three such Java fea-
tures are re�ection, (de)serialization, and threads. Re�ection [12]
dynamically instantiates classes and calls methods based on run-
time strings and types. To resolve re�ective calls, a call-graph anal-
ysis needs to statically determine strings for the class and method
names. It also has to determine receiver and class objects as well
as argument types. (De)serialization [22] writes or reads Java ob-
jects from a stream of bytes, e.g., a �le. For (de)serialization, the
JVM invokes special methods, e.g., readResolve, that must be han-
dled by the call-graph analysis. To resolve a call on a deserialized
object, a call-graph analysis also needs to determine the types
of objects in the byte stream. Threads are started by calling the
built-in Thread.start method, which leads to the JVM invoking
Thread.run; hence, it requires speci�c handling by call-graph algo-
rithms. What complicates the problem further is that these features
can be used in combination, e.g., threads may start Runnable ob-
jects loaded via re�ection.

Advanced features induce unique challenges for di�erent call-
graph algorithms—hence, each call-graph analysis typically treats
them speci�cally. For example, re�ection is easier to handle by
call-graph algorithms that have allocation information and deseri-
alization is easier for imprecise algorithms that over-approximate
the possible classes deserialized.

Handling language features di�erently creates coupling between
call resolution of features and the base call-graph algorithms and
violates separation of concerns. For example, WALA’s CHA does
not use the call-graph-builder facilities of RTA and CFA but its
own, redundant implementation of some features. Thus, WALA’s
RTA algorithm handles static initializers di�erently from WALA’s
CHA—with RTA, they should be deemed reachable only for classes
actually instantiated. In Soot, the call-resolution code for RTA and
Spark is strongly coupled to the call-graph builder class, which not
only resolves standard calls, but is also responsible for recognizing
re�ection. Supporting new language features would thus require
changing the call-graph builder class. Both Soot and Wala resolve
only explicit calls. Features that are not explicit calls such as static
initializers do not use the same call-resolution facilities.

One might argue that this is only the result of missing care in
the implementation and that more implementation e�ort could �x
these inconsistencies. While true, without shared language feature
support, this places a lot of burden onto developers of the call-
graph analyses, both in terms of care and implementation e�ort to
maintain feature support individually for di�erent algorithms, and
feature support can again diverge over time.

Problem 2: Di�erent Type Information. Di�erent call-graph algo-
rithms require di�erent type information to resolve virtual calls. For
example, CHA requires only the declared types, RTA additionally
requires information about the classes that are instantiated any-
where in the program, and CFA requires the precise information
produced by a pointer analysis.

These di�erent representations typically require calls to be re-
solved speci�cally for each call-graph algorithm. An implementa-
tion for call resolution for CHA is not compatible with RTA and
vice-versa because the code to retrieve subtypes from the class
hierarchy is di�erent from code to retrieve suitable types from a
global type set. This is especially true if the global type set for
RTA is constructed on the �y during call-graph construction, i.e., it
constantly changes, while type-hierarchy information is constant.
The same problem holds for CHA and CFA or RTA and CFA—in
fact, for any two call-graph algorithms.

A potential solution is to adopt a single representation for type
information for all algorithms—typically, a points-to representation.
For instance, Soot and WALA do not directly implement RTA, but
emulate it by means of a points-to analysis. This strategy is, how-
ever, ine�cient for algorithms that do not require such an intricate
representation. Our validation (Section 4) of RTA in both Soot and
WALA con�rms this. Using a single representation also closely cou-
ples the resolution of calls to the computation of type information,
exchanging the single representation for a di�erent one, or one
using a di�erent algorithm is not easily done in WALA or Soot. The
declarative framework Doop [3] also uses a single representation,
computing points-to information using Datalog queries. Unlike
WALA or Soot, Doop only supports algorithms of the CFA family,
and it is unclear whether or how e�ciently supporting algorithms
like CHA or RTA could be implemented in Doop while reusing its
call-resolution Datalog queries that use points-to information.

Summary of Problems. Together, the outlined problems make it
di�cult to support language features across multiple call-graph
algorithms, thus complicating call-graph implementation. Complex

53

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

Data store Type Producers

Type Iterator Call Resolvers

Type Consumer

b: Type Information

c: Request

d:
R
eq
u
es
t

e:T
yp

e
In
form

ation

f: Type Information

g: Call graph

a: Reachable contexts

a: Reachable contexts

Figure 2: Interaction of components

code for resolving language features needs to be re-implemented
over and over for di�erent base algorithms, and di�erent kinds of
type information need to be handled in implementing resolution
code. Ultimately this leads to soundness inconsistencies (Table 1).
For instance, soundness with regard to static initializers di�ers
between WALA’s CHA and RTA in an unexpected way. WALA’s
RTA algorithm is in many cases more sound than WALA’s CHA.
This is surprising because the less precise CHA should theoretically
be more sound.

Our Solution in a Nutshell. To address the problems, we decou-
ple the call resolution of special language features from the base
call-graph algorithm and capture them in independent call-resolver
modules. To enable this decoupling, we introduce the type itera-
tor, an abstraction layer that retrieves and interprets the di�erent
type representations produced by di�erent base algorithms (type
producers). This way, call resolvers for individual language features
can be implemented only once, by using the type iterator as a uni-
�ed interface to access type information. Thus, they use the most
precise available type information, while being independent of its
internal representation or computation. Individual call resolvers are
decoupled from each other and agnostic of the call-graph algorithm.
They can be plugged into call-graph algorithms without changes
to existing code.

Our approach addresses problem 1 by having the decoupled
call resolvers collaborate to resolve calls for di�erent language
features. It addresses problem 2 by having type information be
kept in the most e�cient representation for each individual base
algorithm. We show that this approach leads to more consistent
soundness. Furthermore, it improves the maintainability of call-
graph algorithms, as one can easily add, reuse, or exchange call
resolvers to tune precision and performance.

3 UNIMOCG MODULAR ARCHITECTURE

We start with an overview of Unimocg’s components. We then
describe individual components in detail and discuss how they
collaborate despite being decoupled.

3.1 Architectural Overview

Unimocg consists of four types of components (Fig. 1): Type produc-
ers analyze the code to compute the possible runtime types of local
variables and �elds. A type iterator provides a uni�ed view on this

information for other components to use. Call resolvers use type
information through the type iterator to resolve method calls that
result from di�erent language features. Finally, type consumers are
further analyses that use type information but do not resolve calls.

Components are decoupled from each other using interfaces
and communicate indirectly via a central data store; a �xed-point
solver integrated therein serves as an intermediary. To bootstrap the
process, the store is initialized with a set of entry-point contexts3,
e.g., the analyzed program’s main method(s).

Fig. 2 depicts how components interact: Whenever a new reach-
able context is discovered, the solver triggers type producers and
call resolvers (a). Type producers process the new context and
return new type information to the data store (b). Call resolvers
analyze the new context and request data from the type iterator (c);
the latter forwards the request to the store (d), which returns to the
type iterator whatever type information is currently available (e).
The type iterator interprets the information and forwards the result
to call resolvers (f). Also, if step (b) found additional information,
the data store noti�es the type iterator to forward this information
to call resolvers and type consumers that requested it earlier (e &
f). Finally, call resolvers add new edges to the call graph (g), which
may reveal more reachable contexts and the cycle repeats. When
no new edges or type information are found anymore, the analysis
reached a �xed point and terminates. Note that edges are never
changed or removed from the store, thus termination is guaranteed.

3.2 Type Producers

Type producers compute type information required by other com-
ponents. For instance, a type producer for an RTA call graph cal-
culates which classes the program instantiates, while a type pro-
ducer for a CFA call graph computes points-to information of
local variables. A call graph may also use multiple type produc-
ers, e.g., we may split the points-to type producer for CFA into
multiple modules, each handling di�erent language features, e.g.,
java.lang.System.arraycopy. A call graph may not need any
type producer, e.g, a CHA algorithm can compute type information
directly from the class hierarchy without a dedicated type producer.

Type producers represent type information in an algorithm-
speci�c way. For example, an RTA type producer represents its
type information as a global type set, while di�erent CFA type pro-
ducers for di�erent language features represent their information as
points-to sets and set union is used to combine their results. Some
algorithms like :-;-CFA with ; ≥ 1 additionally provide allocation
data, while other type producers cannot provide such informa-
tion. Allocation data may be needed by speci�c call resolvers and
type consumers, e.g., resolving a re�ective call of Method.invoke
requires knowledge about the particular Method object involved.

Despite employing algorithm-speci�c representations, type pro-
ducers implement a common interface (shared with call resolvers).
Listing 1 shows pseudocode for this interface. Global singletons are
used to retrieve dataStore and typeIterator, the actual analysis
is de�ned in method analyze. Di�erent type producers implement
analyze in speci�c ways. It is executed once for each context ctx
found reachable and computes the respective type information.

3A context is the (context-sensitive) abstraction of a method invocation [14]

54

Unimocg: Modular Call-Graph Algorithms for Consistent Handling of Language Features ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 interface CallGraphAnalysisModule:

2 dataStore: DataStore := [...]

3 typeIterator: TypeIterator := [...]

4 fun analyze(context: Context)

Listing 1: Interface for Type Producers & Call Resolvers

1 [...]

2 for statement in method.statements:

3 if statement is Assigment(local, call: Call):

4 callTargets := dataStore.get((context, call), CallTargets)

5 for target in callTargets if target is constructor:

6 newObject := PointsTo(context,call.programCounter,

target.class)

7 dataStore.add((context, local), PointsTo, newObject)

8 [...]

Listing 2: Points-To Type Producer (Excerpt showing points-

to data creation on constructor invocations)

Type producers are agnostic of how calls are resolved. They are
triggered by the store for all reachable contexts, regardless of how
the latter are computed. We illustrate this in Listing 2: It shows an
excerpt of the points-to type producer’s analyze method where
points-to objects are created whenever the analysis of the current
context method �nds a call whose target is a constructor. The type
producer uses only the information in the callTargets that are
retrieved from the data store, the implementation is agnostic of the
call resolver that found the target. In particular, the constructor in-
vocation could be the result of re�ection (e.g., Class.newInstance)
or of deserialization instead of a direct call.

3.3 Type Iterator

Type iterators implement the iterator pattern [8] to allow retrieving
and iterating over information on the possible runtime types of a
local variable or a �eld from the data store in a uniform way. Type
iterators and type producers go hand in hand (e.g., the RTA type
iterator requires an RTA instantiated-types analysis to be executed),
except for CHA where type iteration happens on the �y.

Despite their close relation, we separate type producers from
type iterators for two reasons: First, one can have di�erent type
iterators provide di�erent views on the type information of a single
producer. For example, we can have di�erent iterators for a single
points-to type producer, each for di�erent context sensitivities. Sec-
ond, a single type iterator can provide an aggregated view over the
information produced by multiple type producers. For example, a
single type iterator for some given context sensitivity can aggregate
the information of several points-to type producers—a basic one
for local variables, etc. and additional ones for advanced features,
e.g., native methods or re�ection.

We abstract over speci�c type iterators with a uni�ed interface
TypeIterator. Listing 3 shows the methods that operate on local
variables; analogous methods that operate on �elds are omitted
for brevity. The generic type Context speci�es the type of context
used, e.g., call strings. Methods foreachType and foreachAlloc

1 interface TypeIterator[Context]:

2 fun foreachType(var: Local, context: Context,
handleType: Type −> ())

3 fun foreachAlloc(var: Local, context: Context,
handleAlloc: (Type, Context, ProgramCounter) −> ())

4

5 fun newContext(method): Context

6 fun expandContext(old: Context, callee:Method): Context

7 [...]

Listing 3: Type Iterator Interface

iterate over types and allocations for a local variable var in a cer-
tain context ctx. The interface also de�nes two methods for iter-
ating on incremental updates of the type data, which we omit for
brevity. newContext returns a new context based on a method and
expandContext extends an existing context old as necessary for
context-sensitive analyses like :-;-CFA. This enables type produc-
ers to support di�erent types of context. Call resolvers on the other
hand are oblivious to the type of context and treat it as a method.

Unimocg includes type iterators for CHA, RTA, XTA, MTA, FTA,
CTA, 0-CFA, 1-0-CFA, 0-1-CFA, and 1-1-CFA. In the following, we
discuss three exemplary iterator instances, shown in Listing 4, for
CHA, RTA, and CFA, to show how they retrieve type information
from the data store and how they make it available to call resolvers
and type consumers. We do not discuss the remaining iterators, but
Unimocg is available under an open-source BSD 2-clause license as
part of the OPAL framework.4

The CHA type iterator does not need data from the store as the
class hierarchy is computed a priori. Hence, method foreachType

simply iterates over all subtypes of the variable’s declared type. The
RTA iterator resolves the variable’s types based on which types
may be instantiated. It retrieves the global set of instantiated types
from the central data store, then �lters this set to only the subtypes
of the variable’s declared type; �nally, it iterates over these types.
The :-CFA type iterator resolves the variable’s types based on con-
textual points-to information using a :-truncated call context [23]
(line 29). Given such a call context, the methods foreachType and
foreachAlloc retrieve the set of allocation sites from a context-
sensitive points-to analysis from the data store and iterate over
only the respective types, respectively all allocation sites.

3.4 Call Resolvers

Call resolvers use information obtained from type iterators to re-
solve call sites to possible target contexts. Like type producers, they
implement the interface in Listing 1. For illustration, we discuss
two call resolvers of di�erent complexity.

Listing 5 shows how the call resolver for regular calls uses the
type iterator to resolve virtual method calls: After the analyze

method found a virtual method call call, it iterates over all possible
runtime types of the receiver object (Line 3). Once the types are
known, resolving the call to a callee method (Line 4), creating a
target context for the callee (Line 5) and the call edge (Line 6),
and adding it to the call graph (Line 7) are standard steps in all
call-resolution code.

4https://www.opal-project.de

55

https://www.opal-project.de

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

1 class CHATypeIterator extends TypeIterator[MethodContext]:

2 fun foreachType(local, context, handleType):

3 for t in var.declaredType.subtypes:

4 handleType(t)

5 [...]

6

7 class RTATypeIterator extends TypeIterator[MethodContext]:

8 fun foreachType(local, context, handleType):

9 for t in dataStore.get(InstantiatedTypes):

10 if t is subtype of local.declaredType:

11 handleType(t)

12 [...]

13

14 class CFATypeIterator(k: Int) extends TypeIterator[Callstring]:

15 fun foreachType(local, context, handleType):

16 allocations := dataStore.get((context, local), PointsTo)

17 for a in allocations:

18 handleType(a.type)

19

20 fun foreachAlloc(local, context, handleAlloc):

21 allocations := dataStore.get((context, local), PointsTo)

22 for a in allocations:

23 handleAlloc(a.type, a.context, a.programCounter)

24

25 fun newContext(method):

26 List(method)

27

28 fun expandContext(old, callee):

29 old.take(k).prepend(callee)

30 [...]

Listing 4: Type Iterators

1 [...]

2 if instruction is virtual call call with receiver variable r:

3 typeIterator.foreachType(r, context, receiverType −> {

4 callee := resolveCall(call, receiverType)

5 target := typeIterator.expandContext(context, callee)

6 callEdge := CallEdge(context, call.programCounter, target)

7 dataStore.add((context, call), CallTargets, callEdge)

8 })

9 [...]

Listing 5: Basic Call Resolver (Excerpt showing resolution of

virtual calls)

In Listing 6, we show an excerpt of the re�ection call resolver’s
analyzemethod. It is more complex, but also directly uses the type
iterator: When the re�ection resolver �nds a call, it checks whether
this is a Method.invoke call (Lines 2-3). It takes this information
from the global store, no matter which call resolver found that call
edge. For calls to Method.invoke, the resolver gathers informa-
tion about the receiver and parameters of the re�ectively invoked
method (Lines 4-5); this step (method getObjects, which is not

1 [...]

2 targets := dataStore.get((context, call), CallTargets)

3 if ∃∃∃t ∈∈∈ targets : t.class=Method ∧∧∧ t.name="invoke":

4 receivers := getObjects(t.params.�rst)

5 params := t.params.tail.map(getObjects)

6 method := t.receiver

7 typeIterator.foreachAlloc(method, context, alloc −> {

8 newTargets := �ndTargets(alloc, receivers, params)

9 for target in newTargets:

10 callEdge := CallEdge(context, call.programCounter,
target, receivers, params)

11 dataStore.add((ctx, call), CallTargets, callEdge)

12 })

13 [...]

Listing 6: Re�ection Call Resolver (Excerpt showing

resolution of Method.invoke)

shown here) uses the type iterator’s foreachAlloc. The re�ection
resolver then iterates over the possible Method objects, as they
encode which method can be invoked (Line 7). As in regular virtual-
call resolution, the �nal steps are �nding possible target methods
(Line 8) and adding a corresponding call edge to the store (Line 11).5

As Line 7 shows, allocation data is used to resolve re�ection. Where
type producers do not provide such data, like for CHA or RTA, the
type iterator instead iterates over intra-procedural allocation sites
from def-use information and signi�es if this is incomplete.

Call resolvers are decoupled from each other (and from type pro-
ducers) via the data store. Yet, they collaboratively compute the call
graph. The information contained in the call edge in Line 10 on the
receiver and the parameters is made available to other call resolvers
and type producers through the store. E.g., in Lines 4-6, we get this
data from the individual target call edge, not from the call in
the analyzed code. This is important to allow resolution of chained
indirect invocations. For instance, if the Method object represented
Method.invoke and receivers contained further Method objects,
this chained invocation still can be resolved by the code in Listing 6.

Multiple call resolvers that cover di�erent language features,
e.g., virtual calls, re�ection, threads, or serialization, collaboratively
construct the call graph. By combining a set of call resolvers, one
can con�gure the soundness of a call graph. Individual resolvers
are reusable across di�erent algorithms because they only depend
on the common interface of type iterators. As a result, it is easy to
ensure consistent feature handling across di�erent algorithms.

3.5 Type Consumers

Type information is useful for a range of analyses beyond call-graph
construction. For instance, to determine the immutability of a �eld
f, an immutability analysis may use the types of objects that f could
refer to [20]. We model such analyses as so-called type consumers.
They access type information through the type iterator interface,
which decouples them from the call-graph algorithm that produces

5Finding target methods uses a simple analysis of constant strings aided by Unimocg
providing access to allocation sites. A more sophisticated string analysis can be imple-
mented as a type consumer and used instead for improved soundness and precision.

56

Unimocg: Modular Call-Graph Algorithms for Consistent Handling of Language Features ISSTA ’24, September 16–20, 2024, Vienna, Austria

this information. This allows to easily change the call-graph algo-
rithm without modifying the type-consumer analyses; by doing so,
we can �ne-tune the precision and performance of type consumers.
As such, they are conceptually the same as call resolvers, but they
do not (directly) participate in call-graph construction, so we dis-
cuss them separately. As type consumers depend on the single type
iterator, they consider type information with exactly the precision
of the chosen iterator. This ensures that all type consumers operate
on a consistent level of soundness, precision, and performance. In
contrast, di�erent parts of a monolithic analysis may use varying
levels of hard-coded precision, hindering a systematic exploration
of precision, soundness, and performance trade-o�s.

4 VALIDATION

We implemented the architecture presented in the previous section
in the OPAL framework [6, 10]. Our implementation is available
open source under a BSD 2-clause license.6 OPAL’s blackboard
architecture with its �xed-point solver [10] serves as the central
data store of Unimocg and enables analysis modules to collaborate
while being fully decoupled. The Unimocg architecture is, however,
framework-independent and can be instantiated on top of any
interaction infrastructure that supports decoupled components to
collaborate. We use the OPAL-based implementation to empirically
validate our claims by examining the following research questions:

RQ1 Does Unimocg enable deriving families of call graphs from
reusable modules?

RQ2 Do the resulting call graphs exhibit consistent soundness?
RQ3 What is the impact of Unimocg’s modular architecture and

increased soundness on precision and performance?
RQ4 What is the impact of Unimocg on type consumers?

All measurements were performed in a Docker container that is
provided as an artifact.

4.1 Deriving Call-Graph Families

To answer RQ1, we implemented various type producers, type
iterators, and call resolvers and used them to derive ten di�erent
call-graph algorithms.

The implemented type producers are: (i) a global instantiated-
types analysis, (ii) a parameterized propagation-based instantiated-
types analysis, (iii) a parameterized points-to analysis augmented
by type producers for Java APIs that require special handling, e.g.,
java.lang.System.arraycopy and sun.misc.Unsafe.

The implemented type iterators are: (i) CHA and RTA iterators
from Listing 4, (ii) an iterator that is parameterized to support the
propagation-based algorithms XTA, MTA, FTA, and CTA [29], (iii)
traits for di�erent context sensitivities and points-to set represen-
tations of :-;-CFA call graphs.

The implemented call resolvers are: (i) a virtual and non-virtual
call resolver, (ii) call resolvers for re�ection, serialization, threads,
static initializers, �nalizers, the doPrivileged API provided by
the class java.security.AccessController, and a number of
important native methods from the JDK’s class library, (iii) an
alternative call-resolver for re�ection that uses information from
the dynamic analysis Tami�ex [2].

6https://www.opal-project.de

Combining these type producers, type iterators, and call re-
solvers, we derived ten di�erent call-graph algorithms: CHA, RTA,
XTA, MTA, FTA, CTA, 0-CFA, 0-1-CFA, 1-0-CFA, and 1-1-CFA. For
CHA, we used the CHA iterator without a type producer, as it
solely depends on the precomputed class-hierarchy type informa-
tion. To derive RTA, we combined the RTA iterator with the global
instantiated-types type producer. For XTA, MTA, FTA, and CTA,
we combined the respective iterators with the propagation-based
instantiated-types type producer. Lastly, to derive the CFA vari-
ants, we combined the respective CFA type-iterator traits with the
points-to type producers. Importantly, we could reuse the same
call resolvers across all algorithms although the type information
produced di�ers and call resolvers need di�erent information.

Due to the abstraction that is the common type iterator interface,
we can easily derive a family of call-graph algorithms with varying
levels of precision and performance. By selecting an appropriate
type iterator and corresponding type producer(s), users select the
precision of type information to be computed, i.e., the precision of
the call graph. The selection of call resolvers for language features
is orthogonal to the selection of type iterators and type producers.
This makes it easy for analysis developers to add new algorithms (as
a combination of type iterator and type producer) or call resolvers
for new features and reuse all existing components with them.

■ Unimocg enables deriving families of di�erent call graphs by

modularly composing individual components.

■ All call resolvers are reusable across all algorithms.

4.2 Soundness Consistency

To answer RQ2, we executed the benchmark of Reif et al. [16] on
�ve of Unimocg’s algorithms—CHA, RTA, XTA, 0-CFA, 1-1-CFA—
representative for the di�erent families of algorithms; other algo-
rithms from these families (e.g., MTA instead of XTA) show similar
results. Reif et al.’s benchmark measures missing edges (false nega-
tives) caused by insu�cient support of individual language features.
We used this instead of measuring recall on real-world applications,
as there is no suitable ground truth for recall on real-world applica-
tions. Also, this would only provide a global view on false negatives,
i.e., the overall number of missing call-graph edges independent of
language features; thus, we would not be able to answer if Unimocg
improves consistency of language feature support.

Table 2 shows the results: Unimocg’s call-graph algorithms ex-
hibit high and consistent language feature support. They soundly
pass between 79% and 81% of all test cases. In contrast, WALA
and Soot pass between 41% and 53% of test cases (Table 1). Consis-
tent feature support in Unimocg is due to its call-graph algorithms
sharing the same call resolvers.

Whereas in Soot and WALA, there is a di�erence in soundness
of 12 percentage points (pp), Unimocg shows now such di�erences.
Except for 1-1-CFA, its algorithms show the identical soundness
pro�le and are fully consistent with each other. The 2 pp di�erence
for 1-1-CFA is easily explained: 1-1-CFA has access to interprocedu-
ral allocation site information, which allows it to more soundly and
precisely resolve re�ection. Remaining unsoundness in Unimocg
is the result of not yet implemented call resolvers. Currently, we
still lack resolvers for class loading and dynamic proxies, complex
features not supported by WALA or Soot either. Once respective

57

https://www.opal-project.de

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

Table 2: Soundness of Unimocg’s call-graph algorithms

Feature CHA RTA XTA 0-CFA 1-1-CFA

Non-virtual Calls 6/6 6/6 6/6 6/6 6/6
Virtual Calls 4/4 4/4 4/4 4/4 4/4
Types 6/6 6/6 6/6 6/6 6/6
Static Initializer 8/8 8/8 8/8 8/8 8/8
Java 8 Interfaces 7/7 7/7 7/7 7/7 7/7
Unsafe 7/7 7/7 7/7 7/7 7/7
Class.forName 4/4 4/4 4/4 4/4 4/4
Sign. Polymorph. 7/7 7/7 7/7 7/7 7/7
Java 9+ 2/2 2/2 2/2 2/2 2/2
Non-Java 2/2 2/2 2/2 2/2 2/2
MethodHandle 9/9 9/9 9/9 9/9 9/9
Invokedynamic G# 11/16 G# 11/16 G# 11/16 G# 11/16 G# 11/16
Re�ection G# 10/16 G# 10/16 G# 10/16 G# 10/16 G# 13/16
JVM Calls G# 3/5 G# 3/5 G# 3/5 G# 3/5 G# 3/5
Serialization G# 9/14 G# 9/14 G# 9/14 G# 9/14 G# 9/14
Library Analysis G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5
Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4
DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

Sum (out of 123) 97 (79%) 97 (79%) 97 (79%) 97 (79%) 100 (81%)

Algorithms are ordered by increasing precision
Soundness: all , someG#, or no# test cases passed soundly

call resolvers are implemented, they can be used consistently for all
algorithms. To sum up, the sources of unsoundness in Unimocg are
explainable and resolving them only requires further engineering
e�ort, but no changes to existing call resolvers.

■ Unimocg shows consistently high soundness compared to other

frameworks. This is the result of reusing the same call-resolver

modules across all call-graph algorithms.

4.3 Impact on Precision and Performance

Looking only at test cases passed could lead to incorrect conclu-
sions if test cases were passed only due to excessive imprecision
or come at a signi�cant performance cost. Thus, we show that
Unimocg’s consistent soundness does not compromise precision
or performance (RQ3). To this end, we compare three di�erent
call-graph algorithms: CHA, RTA, and 0-CFA. These algorithms
are available in all frameworks being compared, Unimocg, Soot,
and WALA (0-CFA only for WALA and Unimocg). We run the sub-
ject algorithms on �ve Java applications from XCorpus [5], which
were also used by Reif et al. [16]. We used the Adoptium Open-
JDK 1.8.0_342-b07 that worked with all frameworks. The di�erent
frameworks by default exclude di�erent parts of the JDK from the
analysis, thus, we con�gured all frameworks to analyze the full JDK
for comparability. Soot’s RTA, however, can not analyze the full
JDK 8 as that contains MethodHandle constants that Soot’s RTA is
not prepared to handle (Soot’s SPARK has the same problem). We
thus ran Soot RTA with its default con�guration excluding large
parts of the JDK. The results are shown in Table 3.

Precision. Following common methodology [25, 29], we measure
precision by counting the number of reachable methods—more
precise call graphs have fewer reachable methods.

Unimocg’s call-graph algorithms do not su�er precision degra-
dation compared to Soot’s and WALA’s. Unimocg’s CHA is com-
parable to both Soot’s and WALA’s (∼5% and ∼18% more methods,
respectively). Soot’s RTA, even though excluding large parts of
the JDK, has on average 1.7x and WALA’s has 7x the reachable

methods of Unimocg’s RTA. WALA’s CFA has on average 2x the
reachable methods of Unimocg’s. While precision across di�er-
ent frameworks di�ers signi�cantly and is di�cult to compare
precisely, the numbers clearly indicate that Unimocg’s algorithms
do not su�er from systematic imprecision, on the contrary. This
is explainable: modularity helps not only to cover more features
orthogonally, increasing soundness; it also makes it easier to im-
plement more precise call resolution because call resolvers make
use of the precise type information provided by type producers.

Also note that for Unimocg, the number of reachable methods
decreases signi�cantly when we use more precise type produc-
ers; e.g., its RTA identi�es around 90% fewer reachable methods
than its CHA. This matches the expectations of call-graph users and
shows that reusing the same call-resolver modules across call-graph
algorithms does not impair their relative precision. Speci�cally, in-
dividual call resolvers use the type information gathered by the
chosen type producer and thus work at a consistent level of preci-
sion. This is not possible if the computation of type information is
tightly coupled to the resolution of virtual calls; in this case, mod-
ules for other language features would rely on a �xed, potentially
ad-hoc, method of computing type information.

Performance. Table 3 reports analysis runtime in seconds as me-
dian of 3 executions on a server with two AMD(R) EPYC(R) 7542
@ 2.90 GHz (32 cores / 64 threads each) CPUs and 512GB RAM.

Unimocg’s call-graph algorithms do not su�er performance
degradation, either. The most notable �nding is the di�erence in
RTA performance. Unimocg’s RTA is on average 14x and 35x faster
than RTA of Soot (again, excluding large parts of the JDK), resp.
WALA. This is noteworthy because to enable reusing call-graph
modules, e.g., for the one resolving re�ection, Soot and WALA em-
ulate RTA by a points-to analysis. Our evaluation indicates that
this approach seems to come at a signi�cant performance cost. Uni-
mocg’s 0-CFA is 2.4x slower thanWALA’s 0-CFA across applications
in the benchmark except jext, on which WALA’s 0-CFA took over
36 minutes and Unimocg only took 86 seconds. Unimocg’s CHA is
5x slower than WALA’s, but 6x faster than Soot’s. We attribute this
to OPAL’s intermediate representation, which employs abstract
interpretation [18] to provide re�ned type information but needs
more computation time per reachable method; Soot’s Jimple [31],
while not based on abstract interpretation, o�ers similar informa-
tion. Note that performance di�erences between frameworks may
be due to implementation details beyond our proposed architecture.
Thus, this experiment cannot be used to draw conclusions about ab-
solute performance, only show that Unimocg does not compromise
performance because of its modularity.

We conclude that Unimocg’s modular architecture does not com-
promise performance. This is explainable: the main indirection we
add to OPAL is cheap—two method calls on the type-iterator object.

■ Unimocg’s modular architecture does not compromise on precision

or performance; this is indicated by the comparison to state-of-the-

art frameworks and consistent relative precision across algorithms.

■ Crucially, Unimocg enables reuse of modules across di�erent al-

gorithms without relying on ine�cient emulation; this bene�t is

indicated by Unimocg signi�cantly outperforming Soot andWALA’s

RTA implementations, which are emulated by points-to algorithms.

58

Unimocg: Modular Call-Graph Algorithms for Consistent Handling of Language Features ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 3: Precision and Performance of di�erent Call-Graph Algorithms

CHA RTA 0-CFA

Soot WALA Unimocg Soot7 WALA Unimocg WALA Unimocg

Project #RM time #RM time #RM time #RM time #RM time #RM time #RM time #RM time

jasml 125 408 247 111 761 8 131 680 39 17 258 105 98 497 563 10 919 16 16 100 16 9 178 38
javacc 126 230 236 112 582 8 132 508 36 18 052 118 99 322 541 11 711 15 16 884 17 9 970 46
jext 127 960 245 114 271 8 134 348 42 34 017 372 102 088 561 23 577 18 66 322 2 170 19 463 86
proguard 130 022 256 116 381 8 136 333 40 35 155 397 102 904 584 14 966 17 20 071 20 13 050 44
sablecc 127 274 242 113 630 8 133 552 39 18 970 129 100 287 557 12 636 15 17 714 18 10 789 45

average 245.2 s 7.8 s 39.2 s 224.2 s 560.9 s 16.2 s 448.2 s 51.9 s

4.4 Impact on Type Consumers

To answer RQ4, we performed a case study with OPAL’s �eld im-
mutability analysis [20]. It analyzes whether a �eld can be modi�ed
or is guaranteed to be immutable. In particular, this depends on
whether the types of objects stored in the �eld are immutable.

We �rst studied OPAL’s �eld immutability analysis to �nd out
that it relied on the declared type of a �eld (i.e., it has CHA preci-
sion) plus additional ad-hoc precision improvements (we refer to
this as ad-hoc CHA). Next, we implemented a new version of that
analysis using Unimocg’s type iterator interface. Our hypothesis
is that the �eld immutability analysis bene�ts directly from using
the type iterator in terms of both improved precision and reduced
code size. Precision of the immutability analysis depends on precise
type information, because final �elds are either transitively im-

mutable, if they can only refer to immutable objects, or otherwise
non-transitively immutable, if that is not the case; dependent im-

mutability (for �elds with generic types) is located between these
two levels. More precise type information thus allows to assign the
more precise value transitively immutable to more �elds. Code size
is expected to be reduced because the immutability analysis does
not need to implement (ad-hoc) logic for inferring type information.

We compare the ad-hoc CHA implementation by Roth et al. [20]
with the Unimocg-based implementation using di�erent call-graph
algorithms. Previously, such an exploration of di�erent call-graph
algorithms would not have been possible as the precision was hard-
coded into the analysis (ad-hoc CHA). We analyze the OpenJDK
1.8.0_342-b07 used in the previous section as OpenJDK 1.8 was also
the primary evaluation target of the original implementation [20].

Table 4 shows the results concerning precision, clearly showing
that using more precise call-graph algorithms (in particular, more
precise type information) signi�cantly improves the precision of the
immutability analysis implemented as a Unimocg type consumer.
For instance, using the RTA type iterator results in 17 604 more
�elds, i.e., 18.8% of all �elds, found to be transitively immutable
compared to CHA. Using XTA further improved the precision,
with 4481 more transitively immutable �elds compared to RTA.
The CHA type iterator results in less precision than the baseline,
because of the removed ad-hoc logic of the baseline for improving
precision upon CHA. Yet, (a) the precision reduction is small (0.9%
of all �elds get a less precise result), and (b) one could avoid even

7Not analyzing the full JDK

Table 4: Field Immutability Results for OpenJDK

Algorithm mutable ⊒ non-trans. ⊒ depen. ⊒ trans.

Ad-hoc CHA 23 195 24 296 108 46 368
CHA 23 195 25 252 20 45 500
RTA 23 195 7 352 316 63 104
XTA 23 195 2 871 316 67 585

depen. = dependently immutable, trans. = transitively immutable
Higher numbers in columns to the right = more precise

this small imprecision (at the cost of some performance) by using
Unimocg’s foreachAlloc method instead without adding complexity
to the implementation of the immutability analysis.

Moreover, by implementing the �eld immutability analysis as
a Unimocg type consumer, we could replace the baseline’s ad-hoc
CHA logic (95 lines of code, or 20% of the total size of the �eld
immutability analysis) by 26 LOCs for using the type iterator, while
achieving higher precision and enabling experimentation with dif-
ferent call-graph algorithms. The positive e�ect on code quality
is more pronounced than the mere numbers may suggest: The re-
moved code was complex and a clear violation of the principle of
separation of concerns, as it was not concerned with the actual task
of analyzing immutability. Using Unimocg, duplication of function-
ality is reduced and separation of concerns is re-established.

■ Implementing the �eld immutability analysis as a type consumer

improved it compared to an ad-hoc implementation.

■ Its precision is always consistent with the chosen call-graph algo-

rithm and directly bene�ts from more precise call-graph algorithms.

■ It is less complex and has a better separation of concerns.

4.5 Threats to Validity

Our choice of Soot andWALA to compare against may be perceived
as a threat to the validity of our results. One may wonder about
other frameworks like Doop [3] or the many compilers that inter-
nally compute call graphs. Soot and WALA represent, however, the
state of the art in static analysis frameworks and o�er a variety of
di�erent call-graph algorithms. Unlike them, Doop focuses on a sin-
gle family of call graphs based on CFA whereas Unimocg provides
consistent soundness across call-graph algorithms from di�erent
families. Thus, it is easy for Doop to provide a single representation
of type information and reuse call-resolution code, which is not the

59

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

case if dissimilar families of call-graph algorithms are to be sup-
ported. Compilers usually use a single call-graph implementation
that is tailored to be strictly sound but does not have to consider
details of complex language features, such as re�ection.

Our use of the benchmark by Reif et al. could also introduce
a bias in the considered features. However, it is the only suitable
benchmark available to compare call-graph soundness and it has
been carefully crafted to extensively cover the relevant features for
call-graph construction on the Java Virtual Machine.

5 RELATED WORK

In this section, we present related work regarding call-graph con-
struction. We discuss general-purpose analysis frameworks and
families of call-graph algorithms. Finally, we present related work
about supporting complex language features in call-graph algo-
rithms and measuring soundness w.r.t. such features.

5.1 Analysis Frameworks

OPAL [10] previously supported RTA with a high level of sound-
ness [16]. While language features were supported by individual
modules, they were not built to interpret di�erent kinds of type
information. Thus, they had a �xed level of precision and could not
be reused for consistent soundness with other call-graph algorithms
such as CFA. They also used ad-hoc methods of computing local
allocation information to improve soundness and precision. OPAL’s
immutability analysis [20] also relied on such ad-hoc methods that
are not needed with Unimocg.

Soot [30] supports di�erent call-graph algorithms such as CHA,
RTA, and VTA (Variable Type Analysis [28]). While CHA is imple-
mented directly, other call-graph algorithms such as RTA and VTA
are emulated in the points-to framework SPARK [13]. This allows
them to reuse call-resolution code across di�erent algorithms. How-
ever, the emulation of less precise algorithms such as RTA comes
at the cost of performance as we show in our evaluation (Table 3).

TheWatson Libraries for Analysis (WALA) [11] also support dif-
ferent call-graph algorithms like CHA, RTA, and CFA.WALA decou-
ples the creation of call graphs from the call resolution for language
features with the Java interfaces called call-graph builder and con-

text interpreter. In particular, a call-graph builder computes a call
graph with RTA or CFA precision, whereas a context interpreter
resolves calls of built-in language features such as re�ection. Cru-
cially, unlike Unimocg, WALA does not decouple the analysis of
type information. For example, the RTA call-graph builder is closely
coupled to a points-to analysis to determine the instantiated classes.
Also, the RTA call-graph builder implements special handling of
the clone method and in this is strongly coupled to an interpreter
for that feature. As context interpreters are only invoked on explicit
call instructions, features such as static initialization that happen
regardless of explicit calls cannot be handled. WALA’s CHA imple-
mentation does not use the call-graph-builder facilities and has its
own redundant implementation of some features such as invocation
of static class initializers. In contrast, Unimocg decouples these con-
cerns, leading to more consistent soundness. WALA’s architecture
for call-graph construction is not extensively documented and has
not been discussed in a scienti�c publication so far.

TheDoop framework [3] also supports points-to based call-graph
algorithms. Based on Datalog, it includes rule sets for language
features such as re�ection. These rule sets are modularly shared be-
tween call graphs of di�erent context sensitivity. However, popular
algorithms such as CHA and RTA are not feasible with Doop: even
if they were implemented using Datalog rule sets, they would need
all type information for every local variable to be stored individu-
ally like in points-to based solutions in order for other rule sets like
the base call graph and re�ection to use them. This would result
in high memory use, o�setting the bene�ts of simpler call-graph
algorithms. Unimocg, in contrast, provides just an interface to ac-
cess the type information computed anyway. For RTA, e.g., type
information for a local variable is provided directly from a single set
of all classes instantiated in the program. Thus, type information is
stored only once, keeping memory requirements minimal.

None of the frameworks discussed here decouples the computa-
tion of type information from call resolution for dissimilar families
of call-graph algorithms. In contrast, Unimocgprovides a uni�ed
interface to type information to be used by any call resolution code
for any call-graph algorithm. This uni�ed interface can additionally
be used by analyses beyond call-graph construction.

5.2 Families of Call-Graph Algorithms

Class-hierarchy analysis [4] (CHA) is the simplest type-based call-
graph algorithm as its call resolution depends solely on the statically
declared type of the call’s receiver. Bacon and Sweeney’s rapid-type
analysis [1] (RTA) improves over CHA by only considering subtypes
that are instantiated by the analyzed program. However, these
algorithms solely describe the resolution of standard virtual calls,
neglecting other aspects, such as language features like re�ection,
which additionally a�ect call-graph construction.

Tip and Palsberg [29] propose a propagation-based call-graph
framework, introducing four call-graph algorithms: CTA, FTA,
MTA, and XTA. They attribute a call graph’s precision to the num-
ber of sets used to approximate run-time values of expressions. CTA
uses distinct sets for classes, MTA uses distinct sets for classes and
�elds, FTA uses distinct sets for classes and methods, and XTA uses
distinct sets for �elds and methods. Thus, the framework allows to
instantiate various context-insensitive call-graph algorithms. How-
ever, the authors only discuss and evaluate standard virtual-call
resolution. It remains unclear whether sharing additional modules
to support other language features is generically possible.

Grove and Chambers [9] give a visualization of the relative pre-
cision and computation cost of the previously discussed and further
call-graph algorithms. Moreover, they present a framework for call-
graph algorithms that is parametric in the choice of context sen-
sitivity. They distinguish three contour selection functions to allow
varying levels of context sensitivity. Here, a contour denotes each
context-sensitive version of a procedure. These functions enabled
them to extend Shivers’ :-CFA [23] to the more precise :-;-CFA
algorithm. Thus, the framework allows for a single implementa-
tion for a range of points-to-based call-graph algorithms. However,
their framework is not applicable to commonly used highly scalable
algorithms such as CHA and RTA. Furthermore, forms of context
sensitivity are restricted by the signatures of the four contour key
selection functions for procedures, instance variables, classes, and

60

Unimocg: Modular Call-Graph Algorithms for Consistent Handling of Language Features ISSTA ’24, September 16–20, 2024, Vienna, Austria

the environment (the latter being necessary for nested closures).
Finally, their framework again only considers standard virtual-call
resolution, but not how to combine this with additional modules to
support various language features necessary for sound call graphs.

5.3 Feature Support And Soundness

In addition to the resolution of virtual method calls, a call graph
highly depends on how other aspects, such as language features
or APIs, are taken into account during call-graph construction.
In recent years, researchers proposed approaches to speci�cally
support language features and APIs such as re�ection [15], dynamic
proxies [7], serialization [21] or even new language instructions. For
example, Fourtounis et al. [7] discussed how to add support for a the
invokedynamic Java bytecode instruction introduced in Java which
provides a new call instruction with user-de�ned semantics [19],
which is highly-relevant to call-graph construction. Unfortunately,
all of them are presented and evaluated in the context of speci�c
call-graph algorithms, lacking comprehensive discussion how to
generalize these concepts to other algorithms.

While researching these individual concepts is crucial to obtain
sound and precise call graphs, it does not imply that they are im-
plemented in commonly used call-graph frameworks. Sui et al. [26]
compared call graphs generated by Soot, WALA, and Doop and
measured their di�erences in soundness. Finding unsoundness, they
investigated its root causes in follow upwork [27]. Comparing static
call graphs and dynamically recorded context call trees, they �nd
that advanced language features, such as re�ection, serialization,
or native methods, are signi�cant reasons for unsoundness.

Reif et al. [16, 17] investigated the feature support of various
call-graph algorithms from Soot, WALA, Doop, and OPAL using a
hand-crafted test suite. Their test suite consists of test cases, each
testing whether a particular call-graph algorithm supports a speci�c
Java language feature or API. As a result, they found that even call
graphs from the same framework support di�erent feature sets.

These studies show the need for modular call-graph construction
that supports not only implementing call graphs with di�erent
precision and scalability trade-o�s, but also to implement generic
feature support among di�erent algorithms as we dowith Unimocg.

6 CONCLUSION

We have shown that modular call-graph construction that decou-
ples the computation of types of local variables from the resolution
of call targets is sorely needed. This decoupling enables modular
composition of di�erent analyses that contribute to both type com-
putation and call resolution, making it possible to model di�erent
language features and APIs in individual modules. With individual
modules, feature support can be implemented and reasoned about
in isolation. This is necessary to facilitate support for a multitude
of such features that are relevant to call-graph construction. As a
result, users of call graphs can rely on consistent feature support
and analysis developers can easily add new algorithms or language
features while reusing existing components.

We presented our modular architecture, Unimocg, that achieves
this decoupling through a uni�ed interface, the type iterator, that
can be queried by call-resolver modules to get type information

from type-producer modules. This allows all call resolvers to col-
laborate despite being fully independent of each other. Further
analyses that need type information, such as immutability analyses,
can bene�t from this uni�ed interface as well. With its modular
architecture, Unimocg already supports ten di�erent call-graph al-
gorithms from vastly di�erent families: CHA, RTA, the XTA family
including MTA, FTA, and CTA, and four :-;-CFA-based algorithms.

Our evaluation shows that Unimocg can provide consistently
high soundness across di�erent call-graph algorithms that span a
wide range of precision, an important improvement over the state
of the art. The consistently high soundness does not come at the
price of sacri�cing precision or performance. We also showed how
Unimocg’s uni�ed interface can be used to improve the precision
of an immutability analysis while simplifying its implementation.

While we discussed call-graph construction for JVM-based lan-
guages here, similar issues apply to other programming languages
as well and Unimocg’s architecture is not speci�c to the JVM, but
can be used for call graphs in any language.

7 DATA AVAILABILITY

Raw data presented in the tables and the scripts used to generate
them are provided as an artifact.8

ACKNOWLEDGMENTS

This work was supported by the DFG as part of CRC 1119 CROSS-
ING, by the German Federal Ministry of Education and Research
(BMBF) as well as by the Hessen State Ministry for Higher Educa-
tion, Research and the Arts (HMWK) within their joint support of
the National Research Center for Applied Cybersecurity ATHENE.

REFERENCES
[1] David F. Bacon and Peter F. Sweeney. 1996. Fast Static Analysis of C++ Virtual

Function Calls. In Proceedings of the 11th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (San Jose, CA, USA)
(OOPSLA’96). ACM, 324–341. https://doi.org/10.1145/236337.236371

[2] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011.
Taming Re�ection: Aiding Static Analysis in the Presence of Re�ection and
Custom Class Loaders. In Proceedings of the 33rd International Conference on
Software Engineering (Honolulu, HI, USA) (ICSE’11). IEEE, 241–250. https://doi.
org/10.1145/1985793.1985827

[3] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Speci�ca-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, FL, USA) (OOPSLA’09). ACM, 243–262. https://doi.org/10.1145/1640089.
1640108

[4] Je�rey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In European Conference
on Object-Oriented Programming (Åarhus, Denmark) (ECOOP’95). Springer, 77–
101. https://doi.org/10.1007/3-540-49538-X_5

[5] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–An
executable Corpus of Java Programs. Journal of Object Technology 16, 4 (2017),
1:1–1:24. https://doi.org/10.5381/jot.2017.16.4.a1

[6] Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif, Guido Sal-
vaneschi, and Mira Mezini. 2018. Lattice Based Modularization of Static Analyses.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amsterdam, The
Netherlands) (SOAP’18). ACM, 113–118. https://doi.org/10.1145/3236454.3236509

[7] George Fourtounis, George Kastrinis, and Yannis Smaragdakis. 2018. Static
Analysis of Java Dynamic Proxies. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Amsterdam, The
Netherlands) (ISSTA’18). ACM, 209–220. https://doi.org/10.1145/3234988

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley.

8https://doi.org/10.5281/zenodo.10890010

61

https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.5381/jot.2017.16.4.a1
https://doi.org/10.1145/3236454.3236509
https://doi.org/10.1145/3234988
https://doi.org/10.5281/zenodo.10890010

ISSTA ’24, September 16–20, 2024, Vienna, Austria Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira Mezini

[9] David Grove and Craig Chambers. 2001. A Framework for Call Graph Construc-
tion Algorithms. ACM Transactions on Programming Languages and Systems 23,
6 (2001), 685–746. https://doi.org/10.1145/506315.506316

[10] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
2020. Modular Collaborative ProgramAnalysis in OPAL. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Virtual Event, USA) (ESEC/FSE’20).
ACM, 184–196. https://doi.org/10.1145/3368089.3409765

[11] IBM. 2024. WALA - Static Analysis Framework for Java. http://wala.sourceforge.
net/. [Online; accessed 11-March-2024].

[12] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017. Challenges for
Static Analysis of Java Re�ection – Literature Review and Empirical Study. In
Proceedings of the 39th International Conference on Software Engineering (Buenos
Aires, Argentina) (ICSE’17). IEEE, 507–518. https://doi.org/10.1109/ICSE.2017.53

[13] Ondřej Lhoták and Laurie Hendren. 2003. Scaling Java Points-to Analysis Using
Spark. In Compiler Construction (Warsaw, Poland) (CC’03). Springer, 153–169.
https://doi.org/10.1007/3-540-36579-6_12

[14] Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis:
Is It Worth It?. In International Conference on Compiler Construction (Vienna,
Austria) (CC’06). Springer, 47–64. https://doi.org/10.1007/11688839_5

[15] Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Re�ection Analysis
for Java. In Asian Symposium on Programming Languages and Systems (Tsukuba,
Japan) (APLAS’05). Springer, 139–160. https://doi.org/10.1007/11575467_11

[16] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.
2019. Judge: Identifying, Understanding, and Evaluating Sources of Unsoundness
in Call Graphs. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis (Beijing, China) (ISSTA’19). ACM, 251–261.
https://doi.org/10.1145/3293882.3330555

[17] Michael Reif, Florian Kübler, Michael Eichberg, andMiraMezini. 2018. Systematic
Evaluation of the Unsoundness of Call Graph Construction Algorithms for Java.
In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops (Amsterdam, The
Netherlands) (SOAP’18). ACM, 107–112. https://doi.org/10.1145/3236454.3236503

[18] Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann, Michael Eichberg,
andMiraMezini. 2020. TACAI: An Intermediate Representation Based onAbstract
Interpretation. In Proceedings of the 9th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis (London, UK) (SOAP’20). ACM, 2–7.
https://doi.org/10.1145/3394451.3397204

[19] John R. Rose. 2009. Bytecodes meet Combinators: invokedynamic on the JVM. In
Proceedings of the ThirdWorkshop on Virtual Machines and Intermediate Languages
(Orlando, FL, USA) (VMIL’09). ACM, 2:1–2:11. https://doi.org/10.1145/1711506.
1711508

[20] Tobias Roth, Dominik Helm, Michael Reif, and Mira Mezini. 2021. CiFi: Versatile
Analysis of Class and Field Immutability. In 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (Virtual Event, Australia) (ASE’21).
IEEE, 979–990. https://doi.org/10.1109/ASE51524.2021.9678903

[21] Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi Mirakhorli.
2021. Serialization-Aware Call Graph Construction. In Proceedings of the 10th
ACM SIGPLAN International Workshop on the State Of the Art in Program Analysis
(Virtual Event, Canada) (SOAP’21). ACM, 37–42. https://doi.org/10.1145/3460946.
3464319

[22] Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli. 2020. Salsa: Static
Analysis of Serialization Features. In Proceedings of the 22nd ACM SIGPLAN
International Workshop on Formal Techniques for Java-Like Programs (Virtual
Event, USA) (FTfJP’20). ACM, 18–25. https://doi.org/10.1145/3427761.3428343

[23] Olin Shivers. 1988. Control Flow Analysis in Scheme. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementation
(Atlanta, GA, USA) (PLDI’88). ACM, 164–174. https://doi.org/10.1145/53990.54007

[24] Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages of Taming
Lambda. Ph. D. Dissertation. USA.

[25] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták. 2011. Pick Your
ContextsWell: UnderstandingObject-Sensitivity. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, TX, USA) (POPL’11). ACM, 17–30. https://doi.org/10.1145/1926385.
1926390

[26] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. 2018. On
the Soundness of Call Graph Construction in the Presence of Dynamic Language
Features - A Benchmark and Tool Evaluation. In Programming Languages and
Systems (Wellington, New Zealand) (APLAS’18). Springer, 69–88. https://doi.org/
10.1007/978-3-030-02768-1_4

[27] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On the Recall of
Static Call Graph Construction in Practice. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering (Seoul, South Korea) (ICSE’20).
ACM, 1049–1060. https://doi.org/10.1145/3377811.3380441

[28] Vijay Sundaresan, Laurie Hendren, Chrislain Raza�mahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical Virtual Method
Call Resolution for Java. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Minneapolis,
MN, USA) (OOPSLA’00). ACM, 264–280. https://doi.org/10.1145/354222.353189

[29] Frank Tip and Jens Palsberg. 2000. Scalable Propagation-Based Call Graph
Construction Algorithms. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Minneapolis,
MN, USA) (OOPSLA’00). ACM, 281–293. https://doi.org/10.1145/353171.353190

[30] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research (Mississauga, Ontario, Canada) (CASCON’99). IBM Press, 13.

[31] Raja Vallée-Rai and Laurie J. Hendren. 1998. Jimple: Simplifying Java Bytecode for
Analyses and Transformations. Technical Report. Sable Research Group. McGill
University.

Received 15-DEC-2023; accepted 2024-03-02

62

https://doi.org/10.1145/506315.506316
https://doi.org/10.1145/3368089.3409765
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1007/11688839_5
https://doi.org/10.1007/11575467_11
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/3394451.3397204
https://doi.org/10.1145/1711506.1711508
https://doi.org/10.1145/1711506.1711508
https://doi.org/10.1109/ASE51524.2021.9678903
https://doi.org/10.1145/3460946.3464319
https://doi.org/10.1145/3460946.3464319
https://doi.org/10.1145/3427761.3428343
https://doi.org/10.1145/53990.54007
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1007/978-3-030-02768-1_4
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/354222.353189
https://doi.org/10.1145/353171.353190

	Abstract
	1 Introduction
	2 Problem Statement
	3 Unimocg Modular Architecture
	3.1 Architectural Overview
	3.2 Type Producers
	3.3 Type Iterator
	3.4 Call Resolvers
	3.5 Type Consumers

	4 Validation
	4.1 Deriving Call-Graph Families
	4.2 Soundness Consistency
	4.3 Impact on Precision and Performance
	4.4 Impact on Type Consumers
	4.5 Threats to Validity

	5 Related Work
	5.1 Analysis Frameworks
	5.2 Families of Call-Graph Algorithms
	5.3 Feature Support And Soundness

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

